Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 5(5): 101526, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38670095

RESUMEN

The efficacy of chimeric antigen receptor (CAR)-engineered T cell therapy is suboptimal in most cancers, necessitating further improvement in their therapeutic actions. However, enhancing antitumor T cell response inevitably confers an increased risk of cytokine release syndrome associated with monocyte-derived interleukin-6 (IL-6). Thus, an approach to simultaneously enhance therapeutic efficacy and safety is warranted. Here, we develop a chimeric cytokine receptor composed of the extracellular domains of GP130 and IL6RA linked to the transmembrane and cytoplasmic domain of IL-7R mutant that constitutively activates the JAK-STAT pathway (G6/7R or G6/7R-M452L). CAR-T cells with G6/7R efficiently absorb and degrade monocyte-derived IL-6 in vitro. The G6/7R-expressing CAR-T cells show superior expansion and persistence in vivo, resulting in durable antitumor response in both liquid and solid tumor mouse models. Our strategy can be widely applicable to CAR-T cell therapy to enhance its efficacy and safety, irrespective of the target antigen.


Asunto(s)
Inmunoterapia Adoptiva , Interleucina-6 , Receptores Quiméricos de Antígenos , Linfocitos T , Animales , Humanos , Interleucina-6/metabolismo , Interleucina-6/inmunología , Inmunoterapia Adoptiva/métodos , Ratones , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Línea Celular Tumoral , Receptor gp130 de Citocinas/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Receptores de Citocinas/metabolismo , Receptores de Citocinas/genética , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-7/metabolismo
2.
Int Immunol ; 36(7): 353-364, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38517027

RESUMEN

The efficient generation of chimeric antigen receptor (CAR) T cells is highly influenced by the quality of apheresed T cells. Healthy donor-derived T cells usually proliferate better than patients-derived T cells and are precious resources to generate off-the-shelf CAR-T cells. However, relatively little is known about the determinants that affect the efficient generation of CAR-T cells from healthy donor-derived peripheral blood mononuclear cells (PBMCs) compared with those from the patients' own PBMCs. We here examined the efficiency of CAR-T cell generation from multiple healthy donor samples and analyzed its association with the phenotypic features of the starting peripheral blood T cells. We found that CD62L expression levels within CD8+ T cells were significantly correlated with CAR-T cell expansion. Moreover, high CD62L expression within naïve T cells was associated with the efficient expansion of T cells with a stem cell-like memory phenotype, an indicator of high-quality infusion products. Intriguingly, genetic disruption of CD62L significantly impaired CAR-T cell proliferation and cytokine production upon antigen stimulation. Conversely, ectopic expression of a shedding-resistant CD62L mutant augmented CAR-T cell effector functions compared to unmodified CAR-T cells, resulting in improved antitumor activity in vivo. Collectively, we identified the surface expression of CD62L as a concise indicator of potent T-cell proliferation. CD62L expression is also associated with the functional properties of CAR-T cells. These findings are potentially applicable to selecting optimal donors to massively generate CAR-T cell products.


Asunto(s)
Inmunoterapia Adoptiva , Selectina L , Receptores Quiméricos de Antígenos , Selectina L/metabolismo , Selectina L/inmunología , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Animales , Ratones , Inmunoterapia Adoptiva/métodos , Proliferación Celular
3.
Nucleic Acids Res ; 52(1): 141-153, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37985205

RESUMEN

Genetic modification of specific genes is emerging as a useful tool to enhance the functions of antitumor T cells in adoptive immunotherapy. Current advances in CRISPR/Cas9 technology enable gene knockout during in vitro preparation of infused T-cell products through transient transfection of a Cas9-guide RNA (gRNA) ribonucleoprotein complex. However, selecting optimal gRNAs remains a major challenge for efficient gene ablation. Although multiple in silico tools to predict the targeting efficiency have been developed, their performance has not been validated in cultured human T cells. Here, we explored a strategy to select optimal gRNAs using our pooled data on CRISPR/Cas9-mediated gene knockout in human T cells. The currently available prediction tools alone were insufficient to accurately predict the indel percentage in T cells. We used data on the epigenetic profiles of cultured T cells obtained from transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). Combining the epigenetic information with sequence-based prediction tools significantly improved the gene-editing efficiency. We further demonstrate that epigenetically closed regions can be targeted by designing two gRNAs in adjacent regions. Finally, we demonstrate that the gene-editing efficiency of unstimulated T cells can be enhanced through pretreatment with IL-7. These findings enable more efficient gene editing in human T cells.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Linfocitos T , Humanos , Sistemas CRISPR-Cas/genética , Edición Génica , Linfocitos T/metabolismo
4.
Commun Biol ; 6(1): 258, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906640

RESUMEN

T cell exhaustion is a main obstacle against effective cancer immunotherapy. Exhausted T cells include a subpopulation that maintains proliferative capacity, referred to as precursor exhausted T cells (TPEX). While functionally distinct and important for antitumor immunity, TPEX possess some overlapping phenotypic features with the other T-cell subsets within the heterogeneous tumor-infiltrating T-lymphocytes (TIL). Here we explore surface marker profiles unique to TPEX using the tumor models treated by chimeric antigen receptor (CAR)-engineered T cells. We find that CD83 is predominantly expressed in the CCR7+PD1+ intratumoral CAR-T cells compared with the CCR7-PD1+ (terminally differentiated) and CAR-negative (bystander) T cells. The CD83+CCR7+ CAR-T cells exhibit superior antigen-induced proliferation and IL-2 production compared with the CD83- T cells. Moreover, we confirm selective expression of CD83 in the CCR7+PD1+ T-cell population in primary TIL samples. Our findings identify CD83 as a marker to discriminate TPEX from terminally exhausted and bystander TIL.


Asunto(s)
Neoplasias , Subgrupos de Linfocitos T , Humanos , Receptores CCR7/metabolismo , Subgrupos de Linfocitos T/metabolismo , Inmunoterapia , Linfocitos Infiltrantes de Tumor
5.
Blood ; 139(14): 2156-2172, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-34861037

RESUMEN

Adoptive cancer immunotherapy can induce objective clinical efficacy in patients with advanced cancer; however, a sustained response is achieved in a minority of cases. The persistence of infused T cells is an essential determinant of a durable therapeutic response. Antitumor T cells undergo a genome-wide remodeling of the epigenetic architecture upon repeated antigen encounters, which inevitably induces progressive T-cell differentiation and the loss of longevity. In this study, we identified PR domain zinc finger protein 1 (PRDM1) ie, Blimp-1, as a key epigenetic gene associated with terminal T-cell differentiation. The genetic knockout of PRDM1 by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) supported the maintenance of an early memory phenotype and polyfunctional cytokine secretion in repeatedly stimulated chimeric antigen receptor (CAR)-engineered T cells. PRDM1 disruption promoted the expansion of less differentiated memory CAR-T cells in vivo, which enhanced T-cell persistence and improved therapeutic efficacy in multiple tumor models. Mechanistically, PRDM1-ablated T cells displayed enhanced chromatin accessibility of the genes that regulate memory formation, thereby leading to the acquisition of gene expression profiles representative of early memory T cells. PRDM1 knockout also facilitated maintaining an early memory phenotype and cytokine polyfunctionality in T-cell receptor-engineered T cells as well as tumor-infiltrating lymphocytes. In other words, targeting PRDM1 enabled the generation of superior antitumor T cells, which is potentially applicable to a wide range of adoptive cancer immunotherapies.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Citocinas , Técnicas de Inactivación de Genes , Humanos , Activación de Linfocitos , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...