Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177430

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by diverse symptoms, where accurate diagnosis remains challenging. Traditional clinical observation methods often result in misdiagnosis, highlighting the need for biomarker-based diagnostic approaches. This study utilizes ultraperformance liquid chromatography coupled to an electrospray ionization source and quadrupole time-of-flight untargeted metabolomics combined with biochemometrics to identify novel serum biomarkers for PD. Analyzing a Brazilian cohort of serum samples from 39 PD patients and 15 healthy controls, we identified 15 metabolites significantly associated with PD, with 11 reported as potential biomarkers for the first time. Key disrupted metabolic pathways include caffeine metabolism, arachidonic acid metabolism, and primary bile acid biosynthesis. Our machine learning model demonstrated high accuracy, with the Rotation Forest boosting model achieving 94.1% accuracy in distinguishing PD patients from controls. It is based on three new PD biomarkers (downregulated: 1-lyso-2-arachidonoyl-phosphatidate and hypoxanthine and upregulated: ferulic acid) and surpasses the general 80% diagnostic accuracy obtained from initial clinical evaluations conducted by specialists. Besides, this machine learning model based on a decision tree allowed for visual and easy interpretability of affected metabolites in PD patients. These findings could improve the detection and monitoring of PD, paving the way for more precise diagnostics and therapeutic interventions. Our research emphasizes the critical role of metabolomics and machine learning in advancing our understanding of the chemical profile of neurodegenerative diseases.

2.
Food Res Int ; 186: 114346, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729720

RESUMEN

Specialty coffee beans are those produced, processed, and characterized following the highest quality standards, toward delivering a superior final product. Environmental, climatic, genetic, and processing factors greatly influence the green beans' chemical profile, which reflects on the quality and pricing. The present study focuses on the assessment of eight major health-beneficial bioactive compounds in green coffee beans aiming to underscore the influence of the geographical origin and post-harvesting processing on the quality of the final beverage. For that, we examined the non-volatile chemical profile of specialty Coffea arabica beans from Minas Gerais state, Brazil. It included samples from Cerrado (Savannah), and Matas de Minas and Sul de Minas (Atlantic Forest) regions, produced by two post-harvesting processing practices. Trigonelline, theobromine, theophylline, chlorogenic acid derivatives, caffeine, caffeic acid, ferulic acid, and p-coumaric acid were quantified in the green beans by high-performance liquid chromatography with diode array detection. Additionally, all samples were roasted and subjected to sensory analysis for coffee grading. Principal component analysis suggested that Cerrado samples tended to set apart from the other geographical locations. Those samples also exhibited higher levels of trigonelline as confirmed by two-way ANOVA analysis. Samples subjected to de-pulping processing showed improved chemical composition and sensory score. Those pulped coffees displayed 5.8% more chlorogenic acid derivatives, with an enhancement of 1.5% in the sensory score compared to unprocessed counterparts. Multivariate logistic regression analysis pointed out altitude, ferulic acid, p-coumaric acid, sweetness, and acidity as predictors distinguishing specialty coffee beans obtained by the two post-harvest processing. These findings demonstrate the influence of regional growth conditions and post-harvest treatments on the chemical and sensory quality of coffee. In summary, the present study underscores the value of integrating target metabolite analysis with statistical tools to augment the characterization of specialty coffee beans, offering novel insights for quality assessment with a focus on their bioactive compounds.


Asunto(s)
Coffea , Café , Manipulación de Alimentos , Semillas , Brasil , Coffea/química , Semillas/química , Manipulación de Alimentos/métodos , Café/química , Alcaloides/análisis , Cromatografía Líquida de Alta Presión , Humanos , Gusto , Análisis de Componente Principal
3.
RSC Adv ; 14(15): 10481-10498, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38567345

RESUMEN

We introduce a liquid chromatography - mass spectrometry with data-independent acquisition (LC-MS/DIA)-based strategy, specifically tailored to achieve comprehensive and reliable glycosylated flavonoid profiling. This approach facilitates in-depth and simultaneous exploration of all detected precursors and fragments during data processing, employing the widely-used open-source MZmine 3 software. It was applied to a dataset of six Ocotea plant species. This framework suggested 49 flavonoids potentially newly described for these plant species, alongside 45 known features within the genus. Flavonols kaempferol and quercetin, both exhibiting O-glycosylation patterns, were particularly prevalent. Gas-phase fragmentation reactions further supported these findings. For the first time, the apigenin flavone backbone was also annotated in most of the examined Ocotea species. Apigenin derivatives were found mainly in the C-glycoside form, with O. porosa displaying the highest flavone : flavonol ratio. The approach also allowed an unprecedented detection of kaempferol and quercetin in O. porosa species, and it has underscored the untapped potential of LC-MS/DIA data for broad and reliable flavonoid profiling. Our study annotated more than 50 flavonoid backbones in each species, surpassing the current literature.

4.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38324622

RESUMEN

Liquid chromatography coupled with high-resolution mass spectrometry data-independent acquisition (LC-HRMS/DIA), including MSE, enable comprehensive metabolomics analyses though they pose challenges for data processing with automatic annotation and molecular networking (MN) implementation. This motivated the present proposal, in which we introduce DIA-IntOpenStream, a new integrated workflow combining open-source software to streamline MSE data handling. It provides 'in-house' custom database construction, allows the conversion of raw MSE data to a universal format (.mzML) and leverages open software (MZmine 3 and MS-DIAL) all advantages for confident annotation and effective MN data interpretation. This pipeline significantly enhances the accessibility, reliability and reproducibility of complex MSE/DIA studies, overcoming previous limitations of proprietary software and non-universal MS data formats that restricted integrative analysis. We demonstrate the utility of DIA-IntOpenStream with two independent datasets: dataset 1 consists of new data from 60 plant extracts from the Ocotea genus; dataset 2 is a publicly available actinobacterial extract spiked with authentic standard for detailed comparative analysis with existing methods. This user-friendly pipeline enables broader adoption of cutting-edge MS tools and provides value to the scientific community. Overall, it holds promise for speeding up metabolite discoveries toward a more collaborative and open environment for research.


Asunto(s)
Metabolómica , Programas Informáticos , Reproducibilidad de los Resultados , Flujo de Trabajo , Metabolómica/métodos , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos
5.
Nat Prod Res ; : 1-7, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38384115

RESUMEN

Endophytic fungi residing symbiotically in plant tissues are promising sources of bioactive natural products. This study explored the anti-inflammatory potential of an endophytic fungus isolated from the Brazilian medicinal plant Poincianella pluviosa (Sibipiruna). The extract from the endophyte FPD13 exhibited potential ex vivo anti-inflammatory effects by inhibiting prostaglandin E2 (PGE2) release by 75.22%. Phytochemical analysis using High-Performance Liquid Chromatography (HPLC), Nuclear Magnetic Resonance (NMR), and Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) enabled the isolation and identification of three compounds, including the macrolide Nigrosporolide, the phenyl-propanol Tyrosol, and the terpene Decarestrictine A. Morphological characteristics and Internal Transcribed Spacers region (ITS) sequencing classified fungus FPD13 as Nigrospora zimmermanii. The results reveal the anti-inflammatory potential and chemical diversity of P. pluviosa endophytes, warranting further investigation into the bioactivity and structure elucidation of their bioactive metabolites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...