Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Clin Invest ; 134(5)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227371

RESUMEN

The ability to fight or flee from a threat relies on an acute adrenergic surge that augments cardiac output, which is dependent on increased cardiac contractility and heart rate. This cardiac response depends on ß-adrenergic-initiated reversal of the small RGK G protein Rad-mediated inhibition of voltage-gated calcium channels (CaV) acting through the Cavß subunit. Here, we investigate how Rad couples phosphorylation to augmented Ca2+ influx and increased cardiac contraction. We show that reversal required phosphorylation of Ser272 and Ser300 within Rad's polybasic, hydrophobic C-terminal domain (CTD). Phosphorylation of Ser25 and Ser38 in Rad's N-terminal domain (NTD) alone was ineffective. Phosphorylation of Ser272 and Ser300 or the addition of 4 Asp residues to the CTD reduced Rad's association with the negatively charged, cytoplasmic plasmalemmal surface and with CaVß, even in the absence of CaVα, measured here by FRET. Addition of a posttranslationally prenylated CAAX motif to Rad's C-terminus, which constitutively tethers Rad to the membrane, prevented the physiological and biochemical effects of both phosphorylation and Asp substitution. Thus, dissociation of Rad from the sarcolemma, and consequently from CaVß, is sufficient for sympathetic upregulation of Ca2+ currents.


Asunto(s)
Adrenérgicos , Proteínas de Unión al GTP Monoméricas , Humanos , Adrenérgicos/metabolismo , Adrenérgicos/farmacología , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Arritmias Cardíacas/metabolismo
3.
Nat Cardiovasc Res ; 1(11): 1022-1038, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36424916

RESUMEN

Fight-or-flight responses involve ß-adrenergic-induced increases in heart rate and contractile force. In the present study, we uncover the primary mechanism underlying the heart's innate contractile reserve. We show that four protein kinase A (PKA)-phosphorylated residues in Rad, a calcium channel inhibitor, are crucial for controlling basal calcium current and essential for ß-adrenergic augmentation of calcium influx in cardiomyocytes. Even with intact PKA signaling to other proteins modulating calcium handling, preventing adrenergic activation of calcium channels in Rad-phosphosite-mutant mice (4SA-Rad) has profound physiological effects: reduced heart rate with increased pauses, reduced basal contractility, near-complete attenuation of ß-adrenergic contractile response and diminished exercise capacity. Conversely, expression of mutant calcium-channel ß-subunits that cannot bind 4SA-Rad is sufficient to enhance basal calcium influx and contractility to adrenergically augmented levels of wild-type mice, rescuing the failing heart phenotype of 4SA-Rad mice. Hence, disruption of interactions between Rad and calcium channels constitutes the foundation toward next-generation therapeutics specifically enhancing cardiac contractility.

4.
JCI Insight ; 6(23)2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34710060

RESUMEN

Mechanistically driven therapies for atrial fibrillation (AF), the most common cardiac arrhythmia, are urgently needed, the development of which requires improved understanding of the cellular signaling pathways that facilitate the structural and electrophysiological remodeling that occurs in the atria. Similar to humans, increased persistent Na+ current leads to the development of an atrial myopathy and spontaneous and long-lasting episodes of AF in mice. How increased persistent Na+ current causes both structural and electrophysiological remodeling in the atria is unknown. We crossbred mice expressing human F1759A-NaV1.5 channels with mice expressing human mitochondrial catalase (mCAT). Increased expression of mCAT attenuated mitochondrial and cellular reactive oxygen species (ROS) and the structural remodeling that was induced by persistent F1759A-Na+ current. Despite the heterogeneously prolonged atrial action potential, which was unaffected by the reduction in ROS, the incidences of spontaneous AF, pacing-induced after-depolarizations, and AF were substantially reduced. Expression of mCAT markedly reduced persistent Na+ current-induced ryanodine receptor oxidation and dysfunction. In summary, increased persistent Na+ current in atrial cardiomyocytes, which is observed in patients with AF, induced atrial enlargement, fibrosis, mitochondrial dysmorphology, early after-depolarizations, and AF, all of which can be attenuated by resolving mitochondrial oxidative stress.


Asunto(s)
Fibrilación Atrial/terapia , Cardiomiopatías/terapia , Mitocondrias Cardíacas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Sodio/metabolismo , Animales , Fibrilación Atrial/metabolismo , Cardiomegalia/metabolismo , Cardiomiopatías/metabolismo , Catalasa/genética , Catalasa/metabolismo , Cruzamientos Genéticos , Femenino , Atrios Cardíacos/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
5.
Circ Res ; 128(1): 76-88, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33086983

RESUMEN

RATIONALE: Changing activity of cardiac CaV1.2 channels under basal conditions, during sympathetic activation, and in heart failure is a major determinant of cardiac physiology and pathophysiology. Although cardiac CaV1.2 channels are prominently upregulated via activation of PKA (protein kinase A), essential molecular details remained stubbornly enigmatic. OBJECTIVE: The primary goal of this study was to determine how various factors converging at the CaV1.2 I-II loop interact to regulate channel activity under basal conditions, during ß-adrenergic stimulation, and in heart failure. METHODS AND RESULTS: We generated transgenic mice with expression of CaV1.2 α1C subunits with (1) mutations ablating interaction between α1C and ß-subunits, (2) flexibility-inducing polyglycine substitutions in the I-II loop (GGG-α1C), or (3) introduction of the alternatively spliced 25-amino acid exon 9* mimicking a splice variant of α1C upregulated in the hypertrophied heart. Introducing 3 glycine residues that disrupt a rigid IS6-α-interaction domain helix markedly reduced basal open probability despite intact binding of CaVß to α1C I-II loop and eliminated ß-adrenergic agonist stimulation of CaV1.2 current. In contrast, introduction of the exon 9* splice variant in the α1C I-II loop, which is increased in ventricles of patients with end-stage heart failure, increased basal open probability but did not attenuate stimulatory response to ß-adrenergic agonists when reconstituted heterologously with ß2B and Rad or transgenically expressed in cardiomyocytes. CONCLUSIONS: Ca2+ channel activity is dynamically modulated under basal conditions, during ß-adrenergic stimulation, and in heart failure by mechanisms converging at the α1C I-II loop. CaVß binding to α1C stabilizes an increased channel open probability gating mode by a mechanism that requires an intact rigid linker between the ß-subunit binding site in the I-II loop and the channel pore. Release of Rad-mediated inhibition of Ca2+ channel activity by ß-adrenergic agonists/PKA also requires this rigid linker and ß-binding to α1C.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Canales de Calcio Tipo L/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Proteínas ras/metabolismo , Animales , Canales de Calcio Tipo L/genética , Células HEK293 , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Potenciales de la Membrana , Ratones Transgénicos , Mutación , Miocitos Cardíacos/metabolismo , Fosforilación , Conformación Proteica , Conejos , Relación Estructura-Actividad , Proteínas ras/genética
6.
JCI Insight ; 5(19)2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32870823

RESUMEN

The Ca2+-binding protein calmodulin has emerged as a pivotal player in tuning Na+ channel function, although its impact in vivo remains to be resolved. Here, we identify the role of calmodulin and the NaV1.5 interactome in regulating late Na+ current in cardiomyocytes. We created transgenic mice with cardiac-specific expression of human NaV1.5 channels with alanine substitutions for the IQ motif (IQ/AA). The mutations rendered the channels incapable of binding calmodulin to the C-terminus. The IQ/AA transgenic mice exhibited normal ventricular repolarization without arrhythmias and an absence of increased late Na+ current. In comparison, transgenic mice expressing a lidocaine-resistant (F1759A) human NaV1.5 demonstrated increased late Na+ current and prolonged repolarization in cardiomyocytes, with spontaneous arrhythmias. To determine regulatory factors that prevent late Na+ current for the IQ/AA mutant channel, we considered fibroblast growth factor homologous factors (FHFs), which are within the NaV1.5 proteomic subdomain shown by proximity labeling in transgenic mice expressing NaV1.5 conjugated to ascorbate peroxidase. We found that FGF13 diminished late current of the IQ/AA but not F1759A mutant cardiomyocytes, suggesting that endogenous FHFs may serve to prevent late Na+ current in mouse cardiomyocytes. Leveraging endogenous mechanisms may furnish an alternative avenue for developing novel pharmacology that selectively blunts late Na+ current.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/patología , Calmodulina/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Mutación , Miocitos Cardíacos/patología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Señalización del Calcio , Calmodulina/genética , Femenino , Factores de Crecimiento de Fibroblastos/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Unión Proteica , Sodio/metabolismo
7.
Nature ; 577(7792): 695-700, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31969708

RESUMEN

Increased cardiac contractility during the fight-or-flight response is caused by ß-adrenergic augmentation of CaV1.2 voltage-gated calcium channels1-4. However, this augmentation persists in transgenic murine hearts expressing mutant CaV1.2 α1C and ß subunits that can no longer be phosphorylated by protein kinase A-an essential downstream mediator of ß-adrenergic signalling-suggesting that non-channel factors are also required. Here we identify the mechanism by which ß-adrenergic agonists stimulate voltage-gated calcium channels. We express α1C or ß2B subunits conjugated to ascorbate peroxidase5 in mouse hearts, and use multiplexed quantitative proteomics6,7 to track hundreds of proteins in the proximity of CaV1.2. We observe that the calcium-channel inhibitor Rad8,9, a monomeric G protein, is enriched in the CaV1.2 microenvironment but is depleted during ß-adrenergic stimulation. Phosphorylation by protein kinase A of specific serine residues on Rad decreases its affinity for ß subunits and relieves constitutive inhibition of CaV1.2, observed as an increase in channel open probability. Expression of Rad or its homologue Rem in HEK293T cells also imparts stimulation of CaV1.3 and CaV2.2 by protein kinase A, revealing an evolutionarily conserved mechanism that confers adrenergic modulation upon voltage-gated calcium channels.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Proteómica , Receptores Adrenérgicos beta/metabolismo , Animales , Canales de Calcio Tipo L/química , Canales de Calcio Tipo N/metabolismo , Microambiente Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Células HEK293 , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Masculino , Ratones , Proteínas de Unión al GTP Monoméricas/metabolismo , Miocardio/metabolismo , Fosforilación , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transducción de Señal , Proteínas ras/química , Proteínas ras/metabolismo
8.
JCI Insight ; 52019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-31021331

RESUMEN

Atrial fibrillation (AF) is the most common cardiac arrhythmia and accounts for substantial morbidity and mortality. Recently, we created a mouse model with spontaneous and sustained AF caused by a mutation in the NaV1.5 channel (F1759A) that enhances persistent Na+ current, thereby enabling the investigation of molecular mechanisms that cause AF and the identification of novel treatment strategies. The mice have regional heterogeneity of action potential duration of the atria similar to observations in patients with AF. In these mice, we found that the initiation and persistence of the rotational reentrant AF arrhythmias, known as spiral waves or rotors, were dependent upon action potential duration heterogeneity. The centers of the rotors were localized to regions of greatest heterogeneity of the action potential duration. Pharmacologically attenuating the action potential duration heterogeneity reduced both spontaneous and pacing-induced AF. Computer-based simulations also demonstrated that the action potential duration heterogeneity is sufficient to generate rotors that manifest as AF. Taken together, these findings suggest that action potential duration heterogeneity in mice and humans is one mechanism by which AF is initiated and that reducing action potential duration heterogeneity can lessen the burden of AF.


Asunto(s)
Potenciales de Acción/fisiología , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Fibrilación Atrial/genética , Fibrilación Atrial/patología , Simulación por Computador , Modelos Animales de Enfermedad , Electrofisiología , Femenino , Atrios Cardíacos/patología , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Sodio
9.
J Clin Invest ; 129(2): 647-658, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30422117

RESUMEN

Ca2+ channel ß-subunit interactions with pore-forming α-subunits are long-thought to be obligatory for channel trafficking to the cell surface and for tuning of basal biophysical properties in many tissues. Unexpectedly, we demonstrate that transgenic expression of mutant α1C subunits lacking capacity to bind CaVß can traffic to the sarcolemma in adult cardiomyocytes in vivo and sustain normal excitation-contraction coupling. However, these ß-less Ca2+ channels cannot be stimulated by ß-adrenergic pathway agonists, and thus adrenergic augmentation of contractility is markedly impaired in isolated cardiomyocytes and in hearts. Similarly, viral-mediated expression of a ß-subunit-sequestering peptide sharply curtailed ß-adrenergic stimulation of WT Ca2+ channels, identifying an approach to specifically modulate ß-adrenergic regulation of cardiac contractility. Our data demonstrate that ß subunits are required for ß-adrenergic regulation of CaV1.2 channels and positive inotropy in the heart, but are dispensable for CaV1.2 trafficking to the adult cardiomyocyte cell surface, and for basal function and excitation-contraction coupling.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Miocitos Cardíacos/metabolismo , Sarcolema/metabolismo , Animales , Canales de Calcio Tipo L/genética , Cobayas , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Transporte de Proteínas , Sarcolema/genética
10.
Biochem Biophys Res Commun ; 495(4): 2547-2552, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29288665

RESUMEN

Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh-/-) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca2+]i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca2+]i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5 mM), caffeine (5 mM), and NE (100 nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, ICa,L, in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through ICa,L and that aberrant calcium signaling does not likely contribute to the onset of heart failure in this model.


Asunto(s)
Adrenérgicos/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Epinefrina/metabolismo , Corazón/embriología , Miocardio/metabolismo , Norepinefrina/metabolismo , Animales , Ratones , Ratones Noqueados
11.
Proc Natl Acad Sci U S A ; 114(34): 9194-9199, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28784807

RESUMEN

Calcium influx through the voltage-dependent L-type calcium channel (CaV1.2) rapidly increases in the heart during "fight or flight" through activation of the ß-adrenergic and protein kinase A (PKA) signaling pathway. The precise molecular mechanisms of ß-adrenergic activation of cardiac CaV1.2, however, are incompletely known, but are presumed to require phosphorylation of residues in α1C and C-terminal proteolytic cleavage of the α1C subunit. We generated transgenic mice expressing an α1C with alanine substitutions of all conserved serine or threonine, which is predicted to be a potential PKA phosphorylation site by at least one prediction tool, while sparing the residues previously shown to be phosphorylated but shown individually not to be required for ß-adrenergic regulation of CaV1.2 current (17-mutant). A second line included these 17 putative sites plus the five previously identified phosphoregulatory sites (22-mutant), thus allowing us to query whether regulation requires their contribution in combination. We determined that acute ß-adrenergic regulation does not require any combination of potential PKA phosphorylation sites conserved in human, guinea pig, rabbit, rat, and mouse α1C subunits. We separately generated transgenic mice with inducible expression of proteolytic-resistant α1C Prevention of C-terminal cleavage did not alter ß-adrenergic stimulation of CaV1.2 in the heart. These studies definitively rule out a role for all conserved consensus PKA phosphorylation sites in α1C in ß-adrenergic stimulation of CaV1.2, and show that phosphoregulatory sites on α1C are not redundant and do not each fractionally contribute to the net stimulatory effect of ß-adrenergic stimulation. Further, proteolytic cleavage of α1C is not required for ß-adrenergic stimulation of CaV1.2.


Asunto(s)
Adrenérgicos/metabolismo , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Miocardio/metabolismo , Animales , Canales de Calcio Tipo L/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Cobayas , Humanos , Ratones , Ratones Transgénicos , Fosforilación , Dominios Proteicos , Proteolisis , Conejos , Ratas
12.
J Clin Invest ; 126(1): 112-22, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26595809

RESUMEN

Increased sodium influx via incomplete inactivation of the major cardiac sodium channel Na(V)1.5 is correlated with an increased incidence of atrial fibrillation (AF) in humans. Here, we sought to determine whether increased sodium entry is sufficient to cause the structural and electrophysiological perturbations that are required to initiate and sustain AF. We used mice expressing a human Na(V)1.5 variant with a mutation in the anesthetic-binding site (F1759A-Na(V)1.5) and demonstrated that incomplete Na+ channel inactivation is sufficient to drive structural alterations, including atrial and ventricular enlargement, myofibril disarray, fibrosis and mitochondrial injury, and electrophysiological dysfunctions that together lead to spontaneous and prolonged episodes of AF in these mice. Using this model, we determined that the increase in a persistent sodium current causes heterogeneously prolonged action potential duration and rotors, as well as wave and wavelets in the atria, and thereby mimics mechanistic theories that have been proposed for AF in humans. Acute inhibition of the sodium-calcium exchanger, which targets the downstream effects of enhanced sodium entry, markedly reduced the burden of AF and ventricular arrhythmias in this model, suggesting a potential therapeutic approach for AF. Together, our results indicate that these mice will be important for assessing the cellular mechanisms and potential effectiveness of antiarrhythmic therapies.


Asunto(s)
Fibrilación Atrial/etiología , Cardiomiopatías/etiología , Canal de Sodio Activado por Voltaje NAV1.5/fisiología , Sodio/metabolismo , Animales , Calcio/metabolismo , Electrocardiografía , Ratones
13.
J Biol Chem ; 290(4): 2166-74, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25505241

RESUMEN

Voltage-gated Ca(2+) channels play a key role in initiating muscle excitation-contraction coupling, neurotransmitter release, gene expression, and hormone secretion. The association of CaV1.2 with a supramolecular complex impacts trafficking, localization, turnover, and, most importantly, multifaceted regulation of its function in the heart. Several studies hint at an important role for the C terminus of the α1C subunit as a hub for multidimensional regulation of CaV1.2 channel trafficking and function. Recent studies have demonstrated an important role for the four-residue PDZ binding motif at the C terminus of α1C in interacting with scaffold proteins containing PDZ domains, in the subcellular localization of CaV1.2 in neurons, and in the efficient signaling to cAMP-response element-binding protein in neurons. However, the role of the α1C PDZ ligand domain in the heart is not known. To determine whether the α1C PDZ motif is critical for CaV1.2 trafficking and function in cardiomyocytes, we generated transgenic mice with inducible expression of an N-terminal FLAG epitope-tagged dihydropyridine-resistant α1C with the PDZ motif deleted (ΔPDZ). These mice were crossed with α-myosin heavy chain reverse transcriptional transactivator transgenic mice, and the double-transgenic mice were fed doxycycline. The ΔPDZ channels expressed, trafficked to the membrane, and supported robust excitation-contraction coupling in the presence of nisoldipine, a dihydropyridine Ca(2+) channel blocker, providing functional evidence that they appropriately target to dyads. The ΔPDZ Ca(2+) channels were appropriately regulated by isoproterenol and forskolin. These data indicate that the α1C PDZ motif is not required for surface trafficking, localization to the dyad, or adrenergic stimulation of CaV1.2 in adult cardiomyocytes.


Asunto(s)
Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/fisiología , Corazón/fisiología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Secuencias de Aminoácidos , Animales , Bloqueadores de los Canales de Calcio/química , Colforsina/química , Epítopos/química , Eliminación de Gen , Humanos , Ligandos , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Nisoldipino/química , Estructura Terciaria de Proteína , Conejos , Propiedades de Superficie
14.
Circ Res ; 113(7): 871-80, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23825359

RESUMEN

RATIONALE: Sympathetic nervous system triggered activation of protein kinase A, which phosphorylates several targets within cardiomyocytes, augments inotropy, chronotropy, and lusitropy. An important target of ß-adrenergic stimulation is the sarcolemmal L-type Ca(2+) channel, CaV1.2, which plays a key role in cardiac excitation-contraction coupling. The molecular mechanisms of ß-adrenergic regulation of CaV1.2 in cardiomyocytes, however, are incompletely known. Recently, it has been postulated that proteolytic cleavage at Ala(1800) and protein kinase A phosphorylation of Ser(1700) are required for ß-adrenergic modulation of CaV1.2. OBJECTIVE: To assess the role of Ala(1800) in the cleavage of α1C and the role of Ser(1700) and Thr(1704) in mediating the adrenergic regulation of CaV1.2 in the heart. METHODS AND RESULTS: Using a transgenic approach that enables selective and inducible expression in mice of FLAG-epitope-tagged, dihydropyridine-resistant CaV1.2 channels harboring mutations at key regulatory sites, we show that adrenergic regulation of CaV1.2 current and fractional shortening of cardiomyocytes do not require phosphorylation of either Ser(1700) or Thr(1704) of the α1C subunit. The presence of Ala(1800) and the (1798)NNAN(1801) motif in α1C is not required for proteolytic cleavage of the α1C C-terminus, and deletion of these residues did not perturb adrenergic modulation of CaV1.2 current. CONCLUSIONS: These results show that protein kinase A phosphorylation of α1C Ser(1700) does not have a major role in the sympathetic stimulation of Ca(2+) current and contraction in the adult murine heart. Moreover, this new transgenic approach enables functional and reproducible screening of α1C mutants in freshly isolated adult cardiomyocytes in a reliable, timely, cost-effective manner.


Asunto(s)
Adrenérgicos/farmacología , Canales de Calcio Tipo L/metabolismo , Miocitos Cardíacos/metabolismo , Potenciales de Acción/efectos de los fármacos , Alanina/genética , Alanina/metabolismo , Secuencias de Aminoácidos , Animales , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ratones , Mutación , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Fosforilación , Proteolisis , Conejos , Serina/genética , Serina/metabolismo , Treonina/genética , Treonina/metabolismo
15.
FASEB J ; 27(5): 1859-67, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23325318

RESUMEN

Excessively increased peripheral vasoconstriction is a hallmark of heart failure (HF). Here, we show that in mice with systolic HF post-myocardial infarction, the myogenic tone of third-order mesenteric resistance vessels is increased, the vascular smooth muscle (VSM) membrane potential is depolarized by ~20 mV, and vessel wall intracellular [Ca(2+)] is elevated relative to that in sham-operated control mice. Despite the increased [Ca(2+)], the frequency and amplitude of spontaneous transient outward currents (STOCs), mediated by large conductance, Ca(2+)-activated BK channels, were reduced by nearly 80% (P<0.01) and 25% (P<0.05), respectively, in HF. The expression of the BK α and ß1 subunits was reduced in HF mice compared to controls (65 and 82% lower, respectively, P<0.01). Consistent with the importance of a reduction in BK channel expression and function in mediating the HF-induced increase in myogenic tone are two further findings: a blunting of paxilline-induced increase in myogenic tone in HF mice compared to controls (0.9 vs. 10.9%, respectively), and that HF does not alter the increased myogenic tone of BK ß1-null mice. These findings identify electrical dysregulation within VSM, specifically the reduction of BK currents, as a key molecular mechanism sensitizing resistance vessels to pressure-induced vasoconstriction in systolic HF.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Vasoconstricción/fisiología , Animales , Señalización del Calcio , Masculino , Potenciales de la Membrana , Arterias Mesentéricas/fisiología , Ratones , Músculo Liso Vascular/fisiología , Resistencia Vascular/fisiología
16.
Circulation ; 124(25): 2812-21, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22124376

RESUMEN

BACKGROUND: Diabetes mellitus and obesity, which confer an increased risk of sudden cardiac death, are associated with cardiomyocyte lipid accumulation and altered cardiac electric properties, manifested by prolongation of the QRS duration and QT interval. It is difficult to distinguish the contribution of cardiomyocyte lipid accumulation from the contribution of global metabolic defects to the increased incidence of sudden death and electric abnormalities. METHODS AND RESULTS: In order to study the effects of metabolic abnormalities on arrhythmias without the complex systemic effects of diabetes mellitus and obesity, we studied transgenic mice with cardiac-specific overexpression of peroxisome proliferator-activated receptor γ 1 (PPARγ1) via the cardiac α-myosin heavy-chain promoter. The PPARγ transgenic mice develop abnormal accumulation of intracellular lipids and die as young adults before any significant reduction in systolic function. Using implantable ECG telemeters, we found that these mice have prolongation of the QRS and QT intervals and spontaneous ventricular arrhythmias, including polymorphic ventricular tachycardia and ventricular fibrillation. Isolated cardiomyocytes demonstrated prolonged action potential duration caused by reduced expression and function of the potassium channels responsible for repolarization. Short-term exposure to pioglitazone, a PPARγ agonist, had no effect on mortality or rhythm in WT mice but further exacerbated the arrhythmic phenotype and increased the mortality in the PPARγ transgenic mice. CONCLUSIONS: Our findings support an important link between PPARγ activation, cardiomyocyte lipid accumulation, ion channel remodeling, and increased cardiac mortality.


Asunto(s)
PPAR gamma/genética , Periodo Refractario Electrofisiológico/fisiología , Taquicardia Ventricular/fisiopatología , Fibrilación Ventricular/fisiopatología , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Muerte Súbita Cardíaca/epidemiología , Modelos Animales de Enfermedad , Electrocardiografía , Hipoglucemiantes/farmacología , Incidencia , Lípido A/metabolismo , Ratones , Ratones Transgénicos , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , PPAR gamma/fisiología , Fenotipo , Pioglitazona , Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/fisiología , Periodo Refractario Electrofisiológico/efectos de los fármacos , Sodio/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/mortalidad , Tiazolidinedionas/farmacología , Fibrilación Ventricular/genética , Fibrilación Ventricular/mortalidad , Remodelación Ventricular/fisiología
17.
FASEB J ; 25(3): 928-36, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21127204

RESUMEN

The cardiac voltage-gated Ca(2+) channel, Ca(v)1.2, mediates excitation-contraction coupling in the heart. The molecular composition of the channel includes the pore-forming α1 subunit and auxiliary α2/δ-1 and ß subunits. Ca(2+) channel γ subunits, of which there are 8 isoforms, consist of 4 transmembrane domains with intracellular N- and C-terminal ends. The γ1 subunit was initially detected in the skeletal muscle Ca(v)1.1 channel complex, modulating current amplitude and activation and inactivation properties. The γ1 subunit also shifts the steady-state inactivation to more negative membrane potentials, accelerates current inactivation, and increases peak currents, when coexpressed with the cardiac α1c subunit in Xenopus oocytes and human embryonic kidney (HEK) 293 cells. The γ1 subunit is not expressed, however, in cardiac muscle. We sought to determine whether γ subunits that are expressed in cardiac tissue physically associate with and modulate Ca(v)1.2 function. We now demonstrate that γ4, γ6, γ7, and γ8 subunits physically interact with the Ca(v)1.2 complex. The γ subunits differentially modulate Ca(2+) channel function when coexpressed with the ß1b and α2/δ-1 subunits in HEK cells, altering both activation and inactivation properties. The effects of γ on Ca(v)1.2 function are dependent on the subtype of ß subunit. Our results identify new members of the cardiac Ca(v)1.2 macromolecular complex and identify a mechanism by which to increase the functional diversity of Ca(v)1.2 channels.


Asunto(s)
Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Corazón/fisiología , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Animales , Canales de Calcio Tipo L/química , Células HEK293 , Humanos , Isomerismo , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Potenciales de la Membrana/fisiología , Ratones , Modelos Químicos , Mutagénesis Sitio-Dirigida , Oocitos/fisiología , Técnicas de Placa-Clamp , Subunidades de Proteína/química , Ratas , Xenopus
18.
Biochemistry ; 48(28): 6674-83, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19527072

RESUMEN

The regulation of Ca(2+) influx through the phosphorylation of the L-type Ca(2+) channel, Ca(v)1.2, is important for the modulation of excitation-contraction (E-C) coupling in the heart. Ca(v)1.2 is thought to be the target of multiple kinases that mediate the signals of both the renin-angiotensin and sympathetic nervous systems. Detailed biochemical information regarding the protein phosphorylation reactions involved in the regulation of Ca(v)1.2 is limited. The protein kinase C (PKC) family of kinases can modulate cardiac contractility in a complex manner, such that contractility is either enhanced or depressed and relaxation is either accelerated or slowed. We have previously reported that Ser(1928) in the C-terminus of alpha(1c) was a target for PKCalpha, -zeta, and -epsilon phosphorylation. Here, we report the identification of seven PKC phosphorylation sites within the alpha(1c) subunit. Using phospho-epitope specific antibodies to Ser(1674) and Ser(1928), we demonstrate that both sites within the C-terminus are phosphorylated in HEK cells in response to PMA. Phosphorylation was inhibited with a PKC inhibitor, bisindolylmaleimide. In Langendorff-perfused rat hearts, both Ser(1674) and Ser(1928) were phosphorylated in response to PMA. Phosphorylation of Ser(1674), but not Ser(1928), is PKC isoform specific, as only PKCalpha, -betaI, -betaII, -gamma, -delta, and -theta, but not PKCepsilon, -zeta, and -eta, were able to phosphorylate this site. Our results identify a molecular mechanism by which PKC isoforms can have different effects on channel activity by phosphorylating different residues.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Proteína Quinasa C/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Humanos , Técnicas In Vitro , Isoenzimas/química , Isoenzimas/metabolismo , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Proteína Quinasa C/química , Estructura Secundaria de Proteína , Conejos , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Acetato de Tetradecanoilforbol/farmacología
19.
Biochem Biophys Res Commun ; 360(1): 212-8, 2007 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-17597584

RESUMEN

It has been suggested that Kcne1 subunits are required for adrenergic regulation of Kcnq1 potassium channels. However, in adult mouse hearts, which do not express Kcne1, loss of Kcnq1 causes a Long QT phenotype during adrenergic challenge, raising the possibility that native Kcnq1 currents exist and are adrenergically regulated even in absence of Kcne1. Here, we used immunoblotting and immunohistochemical staining to show that Kcnq1 protein is present in adult mouse hearts. Voltage-clamp experiments demonstrated that Kcnq1 contributes to a steady-state outward current (I(SS)) in wild-type (Kcnq1(+/+)) ventricular myocytes during isoproterenol stimulation, resulting in a significant 7.1% increase in I(SS) density (0.43+/-0.16 pA/pF, p <0.05, n =15), an effect that was absent in Kcnq1-deficient (Kcnq1(-/-)) myocytes (-0.14+/-0.13 pA/pF, n =17). These results demonstrate for the first time that Kcnq1 protein is expressed in adult mouse hearts where it contributes to a beta-adrenergic-induced component of I(SS) that does not require co-assembly with Kcne1.


Asunto(s)
Agonistas Adrenérgicos beta/administración & dosificación , Corazón/fisiología , Isoproterenol/administración & dosificación , Canal de Potasio KCNQ1/fisiología , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Potasio/metabolismo , Animales , Células Cultivadas , Corazón/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ1/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Miocitos Cardíacos/efectos de los fármacos , Distribución Tisular
20.
J Pharmacol Exp Ther ; 316(3): 1098-106, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16278312

RESUMEN

The purpose of the present study was to comparatively evaluate human HERG currents and QT intervals following challenge with suspected torsadogenic and nontorsadogenic drugs. Various concentrations of 14 different drugs were initially evaluated in terms of their relative potency to block I(HERG) in stably transfected human embryonic kidney cells. Four general categories of drugs were identified: high-potency blockers (IC50 < 0.1 microM) included lidoflazine, terfenadine, and haloperidol; moderate-potency blockers (0.1 microM < IC50 < 1 microM) included sertindole, thioridazine, and prenylamine; low-potency blockers (IC50 > 1 microM) included propafenone, loratadine, pyrilamine, lovastatin, and chlorpheniramine; and ineffective blockers (IC50 > 300 microM) included cimetidine, pentamidine, and arsenic trioxide. All measurements were performed using similar conditions and tested acute drug effects only (<30 min of drug exposure per measurement). Since two of the drugs that were ineffective I(HERG) blockers, arsenic trioxide and pentamidine, have been associated with cardiac repolarization delays (QT interval lengthening) and torsades de pointes ventricular arrhythmias in patients, we chose to evaluate them further using the isolated perfused rabbit heart model. Neither arsenic trioxide nor pentamidine had any significant effect on QT intervals in this model, even at relatively high (micromolar) concentrations. Similar results were obtained for loratadine in this model. When the hearts were challenged with a known torsadogenic drug such as cisapride, significant QT lengthening was rapidly induced. These results demonstrate that arsenic trioxide and pentamidine are essentially devoid of direct acute effects on cardiac repolarization or inhibition of I(HERG).


Asunto(s)
Electrocardiografía/efectos de los fármacos , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Torsades de Pointes/inducido químicamente , Animales , Trióxido de Arsénico , Arsenicales/farmacología , Células Cultivadas , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/fisiología , Haloperidol/farmacología , Humanos , Loratadina/farmacología , Lovastatina/farmacología , Metadona/farmacología , Óxidos/farmacología , Pentamidina/farmacología , Conejos , Terfenadina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...