Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
JTO Clin Res Rep ; 5(4): 100668, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38646155

RESUMEN

Introduction: Osimertinib is a standard treatment for patients with EGFR-mutant NSCLC. Although some osimertinib resistance mechanisms have been identified, nearly 50% of the mechanisms remain to be elucidated. This study was aimed at identifying non-genetic mechanisms underlying osimertinib resistance. Methods: We established two osimertinib-resistant cell lines from EGFR mutation-positive PC-9 and HCC827 NSCLC cell lines (PC-9OR and HCC827OR, respectively) using a stepwise method. We compared the phosphoproteomic profiles of the osimertinib-resistant and parental cells using mass spectrometry. Upstream kinases were identified using the application Kinase Enrichment Analysis version 3. Results: Phosphoproteomic analysis revealed 80 phosphorylation sites that were mutually up-regulated in PC-9OR and HCC827OR cells. The Kinase Enrichment Analysis version 3 analysis identified focal adhesion kinase (FAK) and proto-oncogene tyrosine-protein kinase Src (Src) as upstream kinases of these up-regulated phosphoproteins. The small-interfering RNA-mediated knockdown of FAK reduced Src phosphorylation and that of Src reduced FAK phosphorylation in both cell lines. Furthermore, FAK- or Src-specific small-interfering RNA treatments restored EGFR phosphorylation in PC-9OR and HCC827OR cells. The combination of FAK and Src inhibitors inhibited PC-9OR and HCC827OR cell proliferation in vitro and suppressed tumor growth in a xenograft mouse model. Immunohistochemistry of tumors from patients with EGFR-mutant NSCLC suggested that phosphorylated FAK and Src are involved in initial and acquired resistance to osimertinib. Conclusions: Phosphoproteomic analysis may help elucidate the mechanisms of resistance to molecular-targeted therapies in lung cancer. Mutual phosphorylation of FAK and Src is involved in osimertinib resistance. Thus, FAK and Src inhibition may be novel treatment strategies for osimertinib-resistant NSCLC.

2.
IEEE Open J Eng Med Biol ; 5: 173-179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487092

RESUMEN

Haptic interfaces and virtual reality (VR) technology have been increasingly introduced in rehabilitation, facilitating the provision of various feedback and task conditions. However, correspondence between the feedback/task conditions and movement strategy during reaching tasks remains a question. To investigate movement strategy, we assessed velocity parameters and peak latency of electromyography. Ten neuromuscularly intact volunteers participated in the measurement using haptic interface and VR. Concurrent visual feedback and various terminal feedback (e.g., visual, haptic, visual and haptic) were given. Additionally, the object size for the reaching task was changed. The results demonstrated terminal haptic feedback had a significant impact on kinematic parameters; showed [Formula: see text] s ([Formula: see text]) shorter movement time and [Formula: see text] m/s ([Formula: see text]) higher mean velocity compared to no terminal feedback. Also, smaller peak latency was observed in different muscle regions based on the object size.

4.
JCI Insight ; 9(3)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329122

RESUMEN

Immune checkpoint inhibitors (ICIs) are indicated for a diverse range of cancer types, and characterizing the tumor immune microenvironment is critical for optimizing therapeutic strategies, including ICIs. T cell infiltration and activation status in the tumor microenvironment greatly affects the efficacy of ICIs. Here, we show that semaphorin 6D (Sema6D) forward signaling, which is reportedly involved in coordinating the orientation of cell development and migration as a guidance factor, impaired the infiltration and activation of tumor-specific CD8+ T cells in murine oral tumors. Sema6D expressed by nonhematopoietic cells was responsible for this phenotype. Plexin-A4, a receptor for Sema6D, inhibited T cell infiltration and partially suppressed CD8+ T cell activation and proliferation induced by Sema6D stimulation. Moreover, mouse oral tumors, which are resistant to PD-1-blocking treatment in wild-type mice, showed a response to the treatment in Sema6d-KO mice. Finally, analyses of public data sets of human head and neck squamous cell carcinoma, pan-cancer cohorts, and a retrospective cohort study showed that SEMA6D was mainly expressed by nonhematopoietic cells such as cancer cells, and SEMA6D expression was significantly negatively correlated with CD8A, PDCD1, IFNG, and GZMB expression. Thus, targeting Sema6D forward signaling is a promising option for increasing ICI efficacy.


Asunto(s)
Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Animales , Humanos , Ratones , Proliferación Celular , Neoplasias de Cabeza y Cuello/genética , Estudios Retrospectivos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Microambiente Tumoral
5.
Cell Genom ; 4(2): 100473, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38359792

RESUMEN

CD4+ T cells are key mediators of various autoimmune diseases; however, their role in disease progression remains unclear due to cellular heterogeneity. Here, we evaluated CD4+ T cell subpopulations using decomposition-based transcriptome characterization and canonical clustering strategies. This approach identified 12 independent gene programs governing whole CD4+ T cell heterogeneity, which can explain the ambiguity of canonical clustering. In addition, we performed a meta-analysis using public single-cell datasets of over 1.8 million peripheral CD4+ T cells from 953 individuals by projecting cells onto the reference and cataloging cell frequency and qualitative alterations of the populations in 20 diseases. The analyses revealed that the 12 transcriptional programs were useful in characterizing each autoimmune disease and predicting its clinical status. Moreover, genetic variants associated with autoimmune diseases showed disease-specific enrichment within the 12 gene programs. The results collectively provide a landscape of single-cell transcriptomes of CD4+ T cell subpopulations involved in autoimmune disease.


Asunto(s)
Enfermedades Autoinmunes , Transcriptoma , Humanos , Transcriptoma/genética , Linfocitos T , Enfermedades Autoinmunes/genética , Linfocitos T CD4-Positivos
7.
Nat Commun ; 14(1): 5789, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821442

RESUMEN

The immunological basis of the clinical heterogeneity in autoimmune vasculitis remains poorly understood. In this study, we conduct single-cell transcriptome analyses on peripheral blood mononuclear cells (PBMCs) from newly-onset patients with microscopic polyangiitis (MPA). Increased proportions of activated CD14+ monocytes and CD14+ monocytes expressing interferon signature genes (ISGs) are distinctive features of MPA. Patient-specific analysis further classifies MPA into two groups. The MPA-MONO group is characterized by a high proportion of activated CD14+ monocytes, which persist before and after immunosuppressive therapy. These patients are clinically defined by increased monocyte ratio in the total PBMC count and have a high relapse rate. The MPA-IFN group is characterized by a high proportion of ISG+ CD14+ monocytes. These patients are clinically defined by high serum interferon-alpha concentrations and show good response to immunosuppressive therapy. Our findings identify the immunological phenotypes of MPA and provide clinical insights for personalized treatment and accurate prognostic prediction.


Asunto(s)
Inmunosupresores , Poliangitis Microscópica , Humanos , Inmunosupresores/uso terapéutico , Poliangitis Microscópica/genética , Poliangitis Microscópica/tratamiento farmacológico , Leucocitos Mononucleares , Multiómica , Fenotipo , Monocitos
8.
EMBO J ; 42(20): e112573, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37661814

RESUMEN

Mitochondrial DNA (mtDNA) leakage into the cytoplasm can occur when cells are exposed to noxious stimuli. Specific sensors recognize cytoplasmic mtDNA to promote cytokine production. Cytoplasmic mtDNA can also be secreted extracellularly, leading to sterile inflammation. However, the mode of secretion of mtDNA out of cells upon noxious stimuli and its relevance to human disease remain unclear. Here, we show that pyroptotic cells secrete mtDNA encapsulated within exosomes. Activation of caspase-1 leads to mtDNA leakage from the mitochondria into the cytoplasm via gasdermin-D. Caspase-1 also induces intraluminal membrane vesicle formation, allowing for cellular mtDNA to be taken up and secreted as exosomes. Encapsulation of mtDNA within exosomes promotes a strong inflammatory response that is ameliorated upon exosome biosynthesis inhibition in vivo. We further show that monocytes derived from patients with Behçet's syndrome (BS), a chronic systemic inflammatory disorder, show enhanced caspase-1 activation, leading to exosome-mediated mtDNA secretion and similar inflammation pathology as seen in BS patients. Collectively, our findings support that mtDNA-containing exosomes promote inflammation, providing new insights into the propagation and exacerbation of inflammation in human inflammatory diseases.


Asunto(s)
Síndrome de Behçet , Exosomas , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Síndrome de Behçet/genética , Síndrome de Behçet/metabolismo , Exosomas/genética , Mitocondrias/genética , Inflamación/metabolismo , Caspasas/metabolismo
9.
Ther Adv Med Oncol ; 15: 17588359231177021, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323187

RESUMEN

Background: The exosome-focused translational research for afatinib (EXTRA) study is the first trial to identify novel predictive biomarkers for longer treatment efficacy of afatinib in patients with epidermal growth factor receptor (EGFR) mutation-positive nonsmall cell lung cancer (NSCLC) via a comprehensive association study using genomic, proteomic, epigenomic, and metabolomic analyses. Objectives: We report details of the clinical portion prior to omics analyses. Design: A prospective, single-arm, observational study was conducted using afatinib 40 mg/day as an initial dose in untreated patients with EGFR mutation-positive NSCLC. Dose reduction to 20 mg every other day was allowed. Methods: Progression-free survival (PFS), overall survival (OS), and adverse events (AEs) were evaluated. Results: A total of 103 patients (median age 70 years, range 42-88 years) were enrolled from 21 institutions in Japan between February 2017 and March 2018. After a median follow-up of 35.0 months, 21% remained on afatinib treatment, whereas 9% had discontinued treatment because of AEs. The median PFS was 18.4 months, with a 3-year PFS rate of 23.3%. The median afatinib treatment duration in patients with final doses of 40 (n = 27), 30 (n = 23), and 20 mg/day (n = 35), and 20 mg every other day (n = 18) were 13.4, 15.4, 18.8, and 18.3 months, respectively. The median OS was not reached, with a 3-year OS rate of 58.5%. The median OS in patients who did (n = 25) and did not (n = 78) receive osimertinib during the entire course of treatment were 42.4 months and not reached, respectively (p = 0.654). Conclusions: As the largest prospective study in Japan, this study confirmed favorable OS following first-line afatinib in patients with EGFR mutation-positive NSCLC in a real-world setting. Further analysis of the EXTRA study is expected to identify novel predictive biomarkers for afatinib. Trial registration: UMIN-CTR identifier (UMIN000024935, https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_his_list.cgi?recptno=R000028688.

10.
Nat Genet ; 55(5): 753-767, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37095364

RESUMEN

Mechanisms underpinning the dysfunctional immune response in severe acute respiratory syndrome coronavirus 2 infection are elusive. We analyzed single-cell transcriptomes and T and B cell receptors (BCR) of >895,000 peripheral blood mononuclear cells from 73 coronavirus disease 2019 (COVID-19) patients and 75 healthy controls of Japanese ancestry with host genetic data. COVID-19 patients showed a low fraction of nonclassical monocytes (ncMono). We report downregulated cell transitions from classical monocytes to ncMono in COVID-19 with reduced CXCL10 expression in ncMono in severe disease. Cell-cell communication analysis inferred decreased cellular interactions involving ncMono in severe COVID-19. Clonal expansions of BCR were evident in the plasmablasts of patients. Putative disease genes identified by COVID-19 genome-wide association study showed cell type-specific expressions in monocytes and dendritic cells. A COVID-19-associated risk variant at the IFNAR2 locus (rs13050728) had context-specific and monocyte-specific expression quantitative trait loci effects. Our study highlights biological and host genetic involvement of innate immune cells in COVID-19 severity.


Asunto(s)
COVID-19 , Leucocitos Mononucleares , Humanos , Estudio de Asociación del Genoma Completo , COVID-19/genética , Análisis de la Célula Individual , Inmunidad Innata/genética
11.
Inflamm Regen ; 43(1): 1, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609472

RESUMEN

Coronavirus disease 2019 (COVID-19), which spread worldwide from Wuhan, China, in 2019, appeared for a time to be overcome by the remarkable efficacy of mRNA vaccines; however, new variants of severe acute respiratory syndrome coronavirus 2 have emerged and remain rampant. The involvement of the virus in the emergence of variant strains and the relationship between vaccine efficacy and immunosuppressive drugs have attracted significant attention, particularly with regard to patients with autoimmune inflammatory rheumatic disease (AIRD) who take immunosuppressive drugs. This review outlines the relationship between mRNA vaccines, one of the key strategies against COVID-19, and AIRD and discusses the immune response elicited by mRNA vaccines. Furthermore, the impact of immunosuppressive agents on the mRNA vaccine-induced immune response in patients with AIRD and side effects of the vaccine, such as exacerbation of the underlying disease, is outlined.

12.
Proc Natl Acad Sci U S A ; 120(4): e2217902120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669118

RESUMEN

Sex-biased humoral immune responses to COVID-19 patients have been observed, but the cellular basis for this is not understood. Using single-cell proteomics by mass cytometry, we find disrupted regulation of humoral immunity in COVID-19 patients, with a sex-biased loss of circulating follicular regulatory T cells (cTfr) at a significantly greater rate in male patients. In addition, a male sex-associated cellular network of T-peripheral helper, plasma blasts, proliferating and extrafollicular/atypical CD11c+ memory B cells was strongly positively correlated with neutralizing antibody concentrations and negatively correlated with cTfr frequency. These results suggest that sex-specific differences to the balance of cTfr and a network of extrafollicular antibody production-associated cell types may be a key factor in the altered humoral immune responses between male and female COVID-19 patients.


Asunto(s)
Formación de Anticuerpos , COVID-19 , Femenino , Humanos , Masculino , COVID-19/metabolismo , Inmunidad Humoral , Linfocitos T Colaboradores-Inductores , Linfocitos T Reguladores , Linfocitos B
13.
Lancet Reg Health West Pac ; 32: 100661, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36569794

RESUMEN

Background: Autoimmune inflammatory rheumatic disease (AIRD) patients are at high risk of the coronavirus disease 2019 (COVID-19), but the medium-term effects of immunosuppressants on vaccine efficacy are unknown. We investigated the duration of humoral responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wild-type and Omicron variant in AIRD patients administered with two doses of the BNT162b2 (Pfizer-BioNTech) vaccine. Methods: Serum-neutralizing antibody (NAb) and anti-receptor-binding domain (RBD)/spike antibody levels were measured. Short- and medium-term effects of immunosuppressants were analyzed pre-vaccination (Term 1) and 14-42 days (Term 2) and 100-200 days (Term 3) after the second vaccination. Findings: From Feb 1, 2021, to Feb 28, 2022, 439 AIRD patients and 146 healthy controls were investigated. The seropositivity rate and log10-NAb titers were significantly lower in AIRD patients than in controls at Terms 2 and 3. In rheumatoid arthritis patients, tumor necrosis factor-α inhibitors (TNFis) at Term 3, and older age, glucocorticoids, and abatacept at Terms 2 and 3 were risk factors for reduced responses. Anti-Omicron RBD/spike IgG levels strongly correlated with NAb titers. Interpretation: Glucocorticoids, TNFis, and abatacept treatments negatively affect the longevity of humoral responses to SARS-CoV-2, including Omicron, after two vaccine doses. These findings may inform the timing of additional vaccination for AIRD patients. Funding: Cloud Funding of Peace Winds Japan; Center of Innovation Program from the Ministry of Education, Culture, Sports, Science and Technology of Japan; Japan Society for the Promotion of Science KAKENHI; Japan Agency for Medical Research and Development; Kansai Economic Federation; Mitsubishi Zaidan; and Research Grant from Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology.

14.
Int Immunol ; 35(1): 27-41, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35997780

RESUMEN

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease, and many peripheral immune cell populations (ICPs) are thought to be altered according to the course of the disease. However, it is unclear which ICPs are associated with the clinical phenotypes of SLE. We analyzed peripheral blood mononuclear cells (PBMCs) of 28 SLE patients using mass cytometry and identified 30 ICPs. We determined the proliferative activity of ICPs by measuring the proportion of cells expressing specific markers and Ki-67 among CD45+ cells (Ki-67+ proportion). We observed an increased Ki-67+ proportion for many ICPs of SLE patients and examined the association between their Ki-67+ proportions and clinical findings. The Ki-67+ proportions of five ICPs [classical monocyte (cMo), effector memory CD8+ T cell (CD8Tem), CXCR5- naive B cell (CXCR5- nB), and CXCR5- IgD-CD27- B cell (CXCR5- DNB)] were identified as clinically important factors. The SLE Disease Activity Index (SLEDAI) was positively correlated with cMo and plasma cells (PC). The titer of anti-DNA antibodies was positively correlated with cMo, CXCR5- nB, and CXCR5- DNB. The C4 level was negatively correlated with CXCR5- DNB. The bioactivity of type I interferon was also positively correlated with these ICPs. Fever and renal involvement were associated with cMo. Rash was associated with CD8Tem and CXCR5- DNB. On the basis of the proliferative activity among five ICPs, SLE patients can be classified into five clusters showing different SLE phenotypes. Evaluation of the proliferative activity in each ICP can be linked to the clinical phenotypes of individual SLE patients and help in the treatment strategy.


Asunto(s)
Leucocitos Mononucleares , Lupus Eritematoso Sistémico , Humanos , Antígeno Ki-67 , Linfocitos B , Fenotipo
15.
Rheumatology (Oxford) ; 62(5): 1988-1997, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36094336

RESUMEN

OBJECTIVE: B-cell activating factor (BAFF) is implicated in SLE pathogenesis. Blocking BAFF signalling has contributed to reducing glucocorticoid dosage and preventing organ damage. However, clinical characteristics of patients who may benefit from this therapy are not yet fully elucidated. Therefore, we identified patients with high BAFF-bioactivity to investigate their clinical characteristics and BAFF-producing cells. METHODS: We established the reporter cell for BAFF and investigated the clinical characteristics of SLE patients with high BAFF-bioactivity. We identified BAFF-expressing kidney cells using publicly available scRNA-seq data and immunohistological analysis. SLE patients were stratified based on the bioactivity of BAFF and type-I IFN (IFN-I) to identify associated characteristic clinical manifestations. RESULTS: SLE patients, especially patients with LN, had significantly higher serum BAFF-bioactivity than healthy controls (HC) and non-LN patients. Additionally, single-cell-RNA-seq data and immunohistological analysis of kidney samples from LN patients revealed that BAFF is expressed in glomerular macrophages and mesangial cells. Notably, BAFF bioactivity was elevated in the urine of LN patients compared with that of non-LN patients, while no IFN-I bioactivity was detected in the urine. Furthermore, SLE stratification based on bioactivities of serum BAFF and IFN-I revealed the clinical characteristics of patients: high BAFF represented patients with LN and high IFN-I represented patients with blood and skin manifestations. CONCLUSIONS: Monitoring urinary BAFF-bioactivity may be valuable in diagnosing LN. Furthermore, stratification based on serum BAFF and IFN-I bioactivities may allow the identification of appropriate patients for biologics targeting BAFF and IFN-I.


Asunto(s)
Productos Biológicos , Interferón Tipo I , Lupus Eritematoso Sistémico , Nefritis Lúpica , Humanos , Nefritis Lúpica/patología , Factor Activador de Células B , Riñón/patología , Glomérulos Renales/patología , Lupus Eritematoso Sistémico/patología
16.
Inflamm Regen ; 42(1): 53, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36451245

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is widespread; however, accurate predictors of refractory cases have not yet been established. Circulating extracellular vesicles, involved in many pathological processes, are ideal resources for biomarker exploration. METHODS: To identify potential serum biomarkers and examine the proteins associated with the pathogenesis of refractory COVID-19, we conducted high-coverage proteomics on serum extracellular vesicles collected from 12 patients with COVID-19 at different disease severity levels and 4 healthy controls. Furthermore, single-cell RNA sequencing of peripheral blood mononuclear cells collected from 10 patients with COVID-19 and 5 healthy controls was performed. RESULTS: Among the 3046 extracellular vesicle proteins that were identified, expression of MACROH2A1 was significantly elevated in refractory cases compared to non-refractory cases; moreover, its expression was increased according to disease severity. In single-cell RNA sequencing of peripheral blood mononuclear cells, the expression of MACROH2A1 was localized to monocytes and elevated in critical cases. Consistently, single-nucleus RNA sequencing of lung tissues revealed that MACROH2A1 was highly expressed in monocytes and macrophages and was significantly elevated in fatal COVID-19. Moreover, molecular network analysis showed that pathways such as "estrogen signaling pathway," "p160 steroid receptor coactivator (SRC) signaling pathway," and "transcriptional regulation by STAT" were enriched in the transcriptome of monocytes in the peripheral blood mononuclear cells and lungs, and they were also commonly enriched in extracellular vesicle proteomics. CONCLUSIONS: Our findings highlight that MACROH2A1 in extracellular vesicles is a potential biomarker of refractory COVID-19 and may reflect the pathogenesis of COVID-19 in monocytes.

17.
Cureus ; 14(11): e31210, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36505104

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) has rapidly spread worldwide, causing widespread mortality. Many patients with COVID-19 have been treated in homes, hotels, and medium-sized hospitals where doctors were responsible for assessing the need for critical care hospitalization. This study aimed to establish a severity prediction score for critical care triage. METHOD: We analyzed the data of 368 patients with mild-to-moderate COVID-19 who had been admitted to Fussa Hospital, Japan, from April 2020 to February 2022. We defined a high-oxygen group as requiring ≥4 l/min of oxygen. Multivariable logistic regression was used to construct a risk prediction score, and the best model was selected using a stepwise selection method. RESULTS: Multivariable analysis showed that older age (≥70 years), elevated creatine kinase (≥127 U/L), C-reactive protein (≥2.19 mg/dL), and ferritin (≥632.7 ng/mL) levels were independent risk factors associated with the high-oxygen group. Each risk factor was assigned a score ranging from 0 to 4, and we referred to the final overall score as the Fussa score. Patients were classified into two groups, namely, high-risk (total risk factors, ≥2) and low-risk (total risk score, <2) groups. The high-risk group had a significantly worse prognosis (low-risk group, undefined vs. high-risk group, undefined; P< 0.0001). CONCLUSIONS: The Fussa score might help to identify patients with COVID-19 who require critical care hospitalization.

18.
Nat Commun ; 13(1): 6085, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241628

RESUMEN

Carbonate, the major carbon reservoir on Earth's surface, can enter into the mantle by subduction. However, evidence for recycled surficial carbonates in the deep mantle is still scarce. Ocean island basalts from Cook-Austral islands and St. Helena Island, widely called HIMU basalts because of their high µ = 238U/204Pb sources, are thought to be fed by mantle plumes originating in the lower mantle. Here we report exceptionally high δ66Zn values (δ66Zn = 0.38 ± 0.03‰) of these HIMU lavas relative to most published data for oceanic basalts (δ66Zn = 0.31 ± 0.10‰), which requires a source contributed by isotopically heavy recycled surficial carbonates. During subduction of the oceanic lithosphere, melting of mixed surficial carbonates and basaltic crust in the deep mantle generates carbonatite melts, which metasomatizes the nearby mantle and the resultant carbonated mantle ultimately evolves into a high-δ66Zn HIMU source. High-δ66Zn signatures of HIMU basalts, therefore, demonstrate that carbonates can be transported into Earth's deep mantle.

19.
JCI Insight ; 7(22)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36282593

RESUMEN

Consecutive mRNA vaccinations against SARS-CoV-2 reinforced both innate and adaptive immune responses. However, it remains unclear whether the enhanced innate immune responses are mediated by epigenetic regulation and, if so, whether these effects persist. Using mass cytometry, RNA-Seq, and ATAC-Seq, we show that BNT162b2 mRNA vaccination upregulated antiviral and IFN-stimulated gene expression in monocytes with greater effects after the second vaccination than those after the first vaccination. Transcription factor-binding motif analysis also revealed enriched IFN regulatory factors and PU.1 motifs in accessible chromatin regions. Importantly, although consecutive BNT162b2 mRNA vaccinations boosted innate immune responses and caused epigenetic changes in isolated monocytes, we show that these effects occurred only transiently and disappeared 4 weeks after the second vaccination. Furthermore, single-cell RNA-Seq analysis revealed that a similar gene signature was impaired in the monocytes of unvaccinated patients with COVID-19 with acute respiratory distress syndrome. These results reinforce the importance of the innate immune response in the determination of COVID-19 severity but indicate that, unlike adaptive immunity, innate immunity is not unexpectedly sustained even after consecutive vaccination. This study, which focuses on innate immune memory, may provide novel insights into the vaccine development against infectious diseases.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , ARN Mensajero , Epigénesis Genética , Memoria Epigenética , SARS-CoV-2 , COVID-19/prevención & control , Inmunidad Innata
20.
Nature ; 609(7928): 754-760, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940203

RESUMEN

Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1-5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.


Asunto(s)
COVID-19 , Proteínas Activadoras de GTPasa , Estudio de Asociación del Genoma Completo , Factores de Intercambio de Guanina Nucleótido , Interacciones Microbiota-Huesped , SARS-CoV-2 , Alelos , Animales , COVID-19/complicaciones , COVID-19/genética , COVID-19/inmunología , COVID-19/fisiopatología , Modelos Animales de Enfermedad , Proteínas Activadoras de GTPasa/antagonistas & inhibidores , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Predisposición Genética a la Enfermedad , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Japón , Pulmón/patología , Macrófagos , Mesocricetus , Persona de Mediana Edad , Neumonía/complicaciones , Pirazoles/farmacología , RNA-Seq , SARS-CoV-2/patogenicidad , Carga Viral , Pérdida de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA