Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 200: 116128, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377862

RESUMEN

Pharmaceuticals are recognised as environmental contaminants of emerging concern (CECs) due to their increasing presence in the aquatic environment, along with high bioactivity linked to their therapeutic use. Therefore, information on environmental levels is urgently required. This study examined the presence of a range of common pharmaceuticals in oysters and mussels intended for human consumption from England and Wales using stable isotope dilution tandem mass spectrometry. A range of compounds were detected in bivalve tissue, with the Selective Serotonin Reuptake Inhibitor antidepressant sertraline being most abundant, reaching a maximum concentration of 22.1 ng/g wet weight shellfish tissue. Levels of all pharmaceuticals showed seasonal and geographical patterns. A dietary risk assessment revealed that the levels of pharmaceuticals identified in bivalve molluscs represent a clear hazard, but not a risk for the consumer. This study highlights the requirement for further monitoring of the presence of pharmaceuticals and other CECs in bivalve molluscs.


Asunto(s)
Bivalvos , Ostreidae , Animales , Humanos , Estaciones del Año , Bivalvos/química , Ostreidae/química , Mariscos/análisis , Preparaciones Farmacéuticas , Monitoreo del Ambiente
2.
Dis Aquat Organ ; 155: 7-19, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37534718

RESUMEN

Enteric redmouth disease (ERM) caused by the enterobacterium Yersinia ruckeri poses a significant threat to salmonid aquaculture globally. Despite decades of experimental infection studies, key knowledge gaps remain regarding the onset of disease susceptibility and mechanisms of immunity during early developmental stages, undermining disease management efforts in all susceptible life-stages. In this study, a series of immersion challenges were conducted, challenging and re-challenging rainbow trout Oncorhynchus mykiss (Walbaum) at 7, 14 and 51 d post-hatch (dph; mean weights = 0.085, 0.1 and 2.0 g respectively) to high concentrations (1.72 × 107-1.1 × 108 CFU) of Y. ruckeri at 15°C. This study indicates the hitherto unknown initial point of susceptibility to infection as the time of first ingestion of exogenous food (14 dph), and shows that individuals surviving primary challenge at 14 dph are significantly more likely to survive re-challenge at 51 dph compared with naive individuals (hazard ratio = 1.446, p = 0.032). Other key findings include large variation in mortality between different development-stages, from 21.1% at 14 dph to 81.2% at 51 dph, and novel age-dependent symptoms not reported previously. Results from this study enhance our understanding of ERM in juvenile rainbow trout and inform the development of improved aquatic animal health management strategies, thereby contributing to the productivity and sustainability of salmonid aquaculture into the future.


Asunto(s)
Enfermedades de los Peces , Oncorhynchus mykiss , Yersiniosis , Animales , Yersinia ruckeri , Enfermedades de los Peces/microbiología , Yersiniosis/veterinaria , Yersiniosis/microbiología , Acuicultura
3.
Front Endocrinol (Lausanne) ; 13: 981564, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36157463

RESUMEN

Experiments were carried out to determine whether, as with other mollusks that have been studied, the snail, Lymnaea stagnalis, can absorb, esterify and store vertebrate steroids that are present in the water. We also carried out experiments to determine whether neural tissues of the snail could be immunohistochemically stained with an antibody to human aromatase (a key enzyme that catalyzes the conversion of testosterone [T] to 17ß-estradiol [E2]); and, if so, to determine the significance of such staining. Previous studies on other mollusks have reported such staining and have proposed this as decisive evidence that mollusks have the same steroid synthesis pathway as vertebrates. We found that snails absorb, esterify and retain esterified T, E2, progesterone and ethinyl-estradiol (albeit with an absorption rate about four times slower, on a weight basis, than the mussel, Mytilus edulis). We also found that not only anti-human aromatase, but also anti-human nuclear progesterone receptor (nPR) and anti-human gonadotropin-releasing hormone antibodies immunohistochemically stained snail neural cells. However, further experiments, involving gel electrophoretic separation, followed by immunostaining, of proteins extracted from the neural tissue, found at least two positively-stained bands for each antibody, none of which had masses matching the human proteins to which the antibodies had been raised. The anti-aromatase antibody even stained the 140 kDA ladder protein used as a molecular weight marker on the gels. Mass spectrometric analysis of the bands did not find any peptide sequences that corresponded to the human proteins. Our findings confirm that the presence of vertebrate-like sex steroids in molluscan tissues is not necessarily evidence of endogenous origin. The results also show that immunohistochemical studies using antibodies against human proteins are grossly non-specific and likely to have little or no value in studying steroid synthesis or activity in mollusks. Our conclusions are consistent with the fact that genes for aromatase and nPR have not been found in the genome of the snail or of any other mollusk. Our overarching conclusion, from this and our previous studies, is that the endocrinology of mollusks is not the same as that of humans or any other vertebrates and that continuing to carry out physiological and ecotoxicological studies on mollusks on the basis of this false assumption, is an unconscionable waste of resources.


Asunto(s)
Lymnaea , Receptores de Progesterona , Animales , Estradiol , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Lymnaea/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Reproducción/fisiología , Caracoles/metabolismo , Esteroides , Testosterona/metabolismo , Vertebrados/metabolismo , Agua/metabolismo
4.
Ecotoxicol Environ Saf ; 223: 112585, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34365212

RESUMEN

The fish acute toxicity test (TG203; OECD, 2019) is frequently used and highly embedded in hazard and risk assessment globally. The test estimates the concentration of a chemical that kills 50% of the fish (LC50) over a 96 h exposure and is considered one of the most severe scientific procedures undertaken. Over the years, discussions at the Organisation for Economic Co-operation and Development (OECD) have resulted in changes to the test which reduce the number of fish used, as well as the development of a (potential) replacement test (TG236, OECD, 2013). However, refinement of the mortality endpoint with an earlier (moribundity) endpoint was not considered feasible during the Test Guideline's (TG) last update in 2019. Several stakeholders met at a UK-based workshop to discuss how TG203 can be refined, and identified two key opportunities to reduce fish suffering: (1) application of clinical signs that predict mortality and (2) shortening the test duration. However, several aspects need to be addressed before these refinements can be adopted. TG203 has required recording of major categories of sublethal clinical signs since its conception, with the option to record more detailed signs introduced in the 2019 update. However, in the absence of guidance, differences in identification, recording and reporting of clinical signs between technicians and laboratories is likely to have generated piecemeal data of varying quality. Harmonisation of reporting templates, and training in clinical sign recognition and recording are needed to standardise clinical sign data. This is critical to enable robust data-driven detection of clinical signs that predict mortality. Discussions suggested that the 96 h duration of TG203 cannot stand up to scientific scrutiny. Feedback and data from UK contract research organisations (CROs) conducting the test were that a substantial proportion of mortalities occur in the first 24 h. Refinement of TG203 by shortening the test duration would reduce suffering (and test failure rate) but requires a mechanism to correct new results to previous 96 h LC50 data. The actions needed to implement both refinement opportunities are summarised here within a roadmap. A shift in regulatory assessment, where the 96 h LC50 is a familiar base for decisions, will also be critical.


Asunto(s)
Peces , Organización para la Cooperación y el Desarrollo Económico , Animales , Humanos , Dosificación Letal Mediana , Medición de Riesgo , Pruebas de Toxicidad Aguda
5.
Lab Anim ; 55(3): 244-253, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34085570

RESUMEN

Appropriate end-points are integral to the refinement of laboratory animal experiments. Our recent experience has highlighted that ambiguity around end-points is hampering their adoption in experiments that cause severe suffering to fish. In toxicology, the term endpoint (single word) refers to the response variable to the treatment that is measured and analysed. This differs to usage within laboratory animal experimentation, where end-point (hyphenated) refers to the time-point when exposure of the animal(s) to the treatment (and suffering) ends. Within laboratory animal experimentation, standardised terminology is needed for different types of early end-point which are based on the condition of the animal(s) or progress of the experiment. We propose that those involved in regulating and conducting animal experiments consider seven distinct types of early end-point (aim, technical error, biological error, mortality, moribundity, prognostic humane, non-prognostic humane) in addition to the planned experimental end-point (i.e. maximum duration). Moribundity (not morbidity) refers to an animal in a severely debilitated state close to death. Moribundity in fish is not yet defined, so we propose identification via a lack of response to external stimuli, loss of equilibrium (i.e. loss of righting reflex), and a slow opercular ventilation rate. As these clinical signs equate to those of deep/surgical anaesthesia, this moribundity end-point cannot be considered a humane end-point as the fish is likely to be unconscious and have passed the point of maximum suffering. We believe that identification of earlier humane end-points based on clinical signs and wider recognition of other types of early end-point can reduce suffering in experiments.


Asunto(s)
Experimentación Animal/normas , Animales de Laboratorio , Peces , Proyectos de Investigación/normas , Animales
6.
Sci Rep ; 11(1): 12882, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145300

RESUMEN

The monitoring of anthropogenic chemicals in the aquatic environment including their potential effects on aquatic organisms, is important for protecting life under water, a key sustainable development goal. In parallel with monitoring the concentrations of chemicals of concern, sentinel species are often used to investigate the biological effects of contaminants. Among these, bivalve molluscs such as mussels are filter-feeding and sessile, hence an excellent model system for measuring localized pollution. This study investigates the relationship between the metabolic state of the blue mussel (Mytilus edulis) and its physiology in different environments. We developed a computational model based on a reference site (relatively unpolluted) and integrated seasonal dynamics of metabolite relative concentrations with key physiological indicators and environmental parameters. The analysis of the model revealed that changes in metabolite levels during an annual cycle are influenced by water temperature and are linked to gonadal development. This work supports the importance of data-driven biology and its potential in environmental monitoring.


Asunto(s)
Biomarcadores , Ambiente , Gónadas/embriología , Gónadas/metabolismo , Metaboloma , Mytilus edulis/fisiología , Desarrollo Sexual , Animales , Biología Computacional/métodos , Metabolómica/métodos , Modelos Teóricos , Mytilus edulis/embriología , Estaciones del Año , Factores Sexuales , Desarrollo Sexual/genética
7.
Front Endocrinol (Lausanne) ; 12: 794623, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975764

RESUMEN

Previous toxicokinetic studies have shown that mussels (Mytilus spp.) can readily absorb the three main mammalian sex steroids, estradiol (E2), testosterone (T) and progesterone (P) from water. They also have a strong ability to store E2 and the 5α-reduced metabolites of T and P in the form of fatty acid esters. These esters were shown to have half-lives that were measured in weeks (i.e. they were not subject to fast depuration). The present study looked at the toxicokinetic profile of two other common steroids that are found in water, the potent synthetic oestrogen, (ethinyl-estradiol) (EE2; one of the two components of 'the pill'), and cortisol, a natural stress steroid in vertebrates. In the first three hours of uptake, tritiated EE2 was found to be taken up at a similar rate to tritiated E2. However, the levels in the water plateaued sooner than E2. The ability of the animals to both esterify and sulphate EE2 was found to be much lower than E2, but nevertheless did still take place. After 24 h of exposure, the majority of radiolabelled EE2 in the animals was present in the form of free steroid, contrary to E2, which was esterified. This metabolism was reflected in a much lower half-life (of only 15 h for EE2 in the mussels as opposed to 8 days for E2 and >10 days for T and P). Intriguingly, hardly any cortisol (in fact none at all in one of the experiments) was absorbed by the mussels. The implications of this finding in both toxicokinetic profiling and evolutionary significance (why cortisol might have evolved as a stress steroid in bony fishes) are discussed.


Asunto(s)
Estrógenos/metabolismo , Etinilestradiol/metabolismo , Hidrocortisona/metabolismo , Tasa de Depuración Metabólica/fisiología , Contaminantes Químicos del Agua/metabolismo , Agua/metabolismo , Animales , Estrógenos/análisis , Etinilestradiol/análisis , Hidrocortisona/análisis , Mytilus , Agua/análisis , Contaminantes Químicos del Agua/análisis
8.
J Fish Dis ; 44(6): 823-835, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33277726

RESUMEN

Atypical Aeromonas salmonicida (aAs) is currently one of the most routinely recovered bacterial pathogens isolated during disease outbreaks in farmed cleaner fish, ballan wrasse (Labrus bergylta, Ascanius). Vibrionaceae family bacteria have also been isolated from ballan wrasse in Scotland. This study determined the infectivity, pathogenicity and virulence of aAs and Vibrionaceae isolates in juvenile farmed ballan wrasse (n = 50; approx. 2 g) using a bath challenge, and fish were monitored for a period of 16 days. Atypical As caused significant mortalities in contrast to Vibrionaceae isolates. Notably, differential virulence was observed between two aAs vapA type V strains at similar challenge doses. Diseased fish exhibited a systemic infection where aAs was detected in all analysed tissues (liver, spleen and kidney) by PCR and qPCR. Macroscopically, moribund and survivor fish exhibited hepatomegaly and splenomegaly. In moribund and surviving fish, histopathology showed granulomatous hepatitis with eosinophilic granular cells surrounding bacterial colonies and endocarditis along with splenic histiocytosis. This is the first report of a successful aAs bath challenge model for juvenile ballan wrasse which provides an important tool for future studies on vaccine efficacy and immunocompetence.


Asunto(s)
Aeromonas salmonicida/aislamiento & purificación , Susceptibilidad a Enfermedades/veterinaria , Peces , Forunculosis/diagnóstico , Infecciones por Bacterias Gramnegativas/veterinaria , Factores de Edad , Animales , Susceptibilidad a Enfermedades/microbiología , Forunculosis/microbiología , Infecciones por Bacterias Gramnegativas/diagnóstico , Infecciones por Bacterias Gramnegativas/microbiología , Escocia
9.
Sci Rep ; 10(1): 18212, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097784

RESUMEN

Model fish species such as sticklebacks and zebrafish are frequently used in studies that require DNA to be collected from live animals. This is typically achieved by fin clipping, a procedure that is simple and reliable to perform but that can harm fish. An alternative procedure to sample DNA involves swabbing the skin to collect mucus and epithelial cells. Although swabbing appears to be less invasive than fin clipping, it still requires fish to be netted, held in air and handled-procedures that can cause stress. In this study we combine behavioural and physiological analyses to investigate changes in gene expression, behaviour and welfare after fin clipping and swabbing. Swabbing led to a smaller change in cortisol release and behaviour on the first day of analysis compared to fin clipping. It also led to less variability in data suggesting that fewer animals need to be measured after using this technique. However, swabbing triggered some longer term changes in zebrafish behaviour suggesting a delayed response to sample collection. Skin swabbing does not require the use of anaesthetics and triggers fewer changes in behaviour and physiology than fin clipping. It is therefore a more refined technique for DNA collection with the potential to improve fish health and welfare.


Asunto(s)
ADN/aislamiento & purificación , Modelos Biológicos , Smegmamorpha/genética , Pez Cebra/genética , Animales , ADN/genética , Hidrocortisona/metabolismo
10.
Chemosphere ; 256: 126946, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32445993

RESUMEN

Hepatocellular fibrillar inclusions (HFI) are an unusual pathology of unknown aetiology affecting European flounder (Platichthys flesus), particularly from estuaries historically impacted by pollution. This study demonstrated that the HFI prevalence range was 6-77% at several UK estuaries, with Spearman rank correlation analysis showing a correlation between HFI prevalence and sediment concentrations of ∑PBDEs and ∑HBCDs. The data showed that males exhibit higher HFI prevalence than females, with severity being more pronounced in estuaries exhibiting higher prevalence. HFI were not age associated indicating a subacute condition. Electron microscopy confirmed that HFI were modified proliferating rough endoplasmic reticulum (RER), whilst immunohistochemistry provided evidence of VTG production in HFI of male P. flesus. Despite positive labelling of aberrant VTG production, we could not provide additional evidence of xenoestrogen exposure. Gene transcripts (VTG/CHR) and plasma VTG concentrations (>1 µg ml-1), were only considered elevated in four male fish showing no correlation with HFI severity. Further analysis revealed that reproductively mature female P. flesus i.e. >3-year-old, did not exhibit HFI, whereas males of all ages were affected. This, combined with previous reports that estradiol (E2) can impair mixed function oxygenase activity, supports a hypothesis that harmful chemical metabolites (following phase 1 metabolism of their parent compounds) are potentially responsible for HFIs observed in male and ≤ 3-year-old female fish. Consequently, HFI and xenoestrogenic induced VTG production could be independent of each other resulting from different concurrent toxicopathic mechanisms, although laboratory exposures will likely be the only way to determine the true aetiology of HFI.


Asunto(s)
Carcinoma Hepatocelular/veterinaria , Lenguado/fisiología , Neoplasias Hepáticas/veterinaria , Animales , Carcinoma Hepatocelular/patología , Contaminación Ambiental , Estradiol/metabolismo , Estrógenos/metabolismo , Estuarios , Femenino , Peces , Lenguado/metabolismo , Hígado/patología , Neoplasias Hepáticas/patología , Masculino , Reino Unido , Contaminantes Químicos del Agua/metabolismo
11.
Environ Pollut ; 263(Pt A): 114326, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32247919

RESUMEN

Hypoxia is a major stressor in aquatic environments and it is frequently linked with excess nutrients resulting from sewage effluent discharges and agricultural runoff, which often also contain complex mixtures of chemicals. Despite this, interactions between hypoxia and chemical toxicity are poorly understood. We exposed male three-spined stickleback during the onset of sexual maturation to a model anti-androgen (flutamide; 250 µg/L) and a pesticide with anti-androgenic activity (linuron; 250 µg/L), under either 97% or 56% air saturation (AS). We assessed the effects of each chemical, alone and in combination with reduced oxygen concentration, by measuring the transcription of spiggin in the kidney, as a marker of androgen signalling, and 11 genes in the liver involved in some of the molecular pathways hypothesised to be affected by the exposures. Spiggin transcription was strongly inhibited by flutamide under both AS conditions. In contrast, for linuron, a strong inhibition of spiggin was observed under 97% AS, but this effect was supressed under reduced air saturation, likely due to interactions between the hypoxia inducible factor and the aryl hydrocarbon receptor (AhR) pathways. In the liver, hypoxia inducible factor 1α was induced following exposure to both flutamide and linuron, however this was independent of the level of air saturation. This work illustrates the potential for interactions between hypoxia and pollutants with endocrine or AhR agonist activity to occur, with implications for risk assessment and management.


Asunto(s)
Smegmamorpha , Contaminantes Químicos del Agua , Animales , Flutamida , Hipoxia , Linurona , Masculino
12.
Aquat Toxicol ; 217: 105325, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31711009

RESUMEN

Hypoxia is one of the major threats to biodiversity in aquatic systems. The association of hypoxia with nutrient-rich effluent input into aquatic systems results in scenarios where hypoxic waters could be contaminated with a wide range of chemicals, including metals. Despite this, little is known about the ability of fish to respond to hypoxia when exposures occur in the presence of environmental toxicants. We address this knowledge gap by investigating the effects of exposures to different levels of oxygen in the presence or absence of copper using the three-spined sticklebacks (Gasterosteus aculeatus) model. Fish were exposed to different air saturations (AS; 100%, 75% and 50%) in combination with copper (20 µg/L) over a 4 day period. The critical oxygen level (Pcrit), an indicator of acute hypoxia tolerance, was 54.64 ± 2.51% AS under control conditions, and 36.21 ± 2.14% when fish were chronically exposed to hypoxia (50% AS) for 4 days, revealing the ability of fish to acclimate to low oxygen conditions. Importantly, the additional exposure to copper (20 µg/L) prevented this improvement in Pcrit, impairing hypoxia acclimation. In addition, an increase in ventilation rate was observed for combined copper and hypoxia exposure, compared to the single stressors or the controls. Interestingly, in the groups exposed to copper, a large increase in variation in the measured Pcrit was observed between individuals, both under normoxic and hypoxic conditions. This variation, if observed in wild populations, may lead to selection for a tolerant phenotype and alterations in the gene pool of the populations, with consequences for their sustainability. Our findings provide strong evidence that copper reduces the capacity of fish to respond to hypoxia by preventing acclimation and will inform predictions of the consequences of global increases of hypoxia in water systems affected by other pollutants worldwide.


Asunto(s)
Aclimatación/efectos de los fármacos , Cobre/toxicidad , Exposición a Riesgos Ambientales , Hipoxia/fisiopatología , Smegmamorpha/fisiología , Animales , Conducta Animal/efectos de los fármacos , Biomarcadores/metabolismo , Cobre/metabolismo , Hematócrito , Hemoglobinas/metabolismo , Modelos Animales , Oxígeno , ARN Mensajero/genética , ARN Mensajero/metabolismo , Agua/química , Contaminantes Químicos del Agua/toxicidad
13.
Sci Rep ; 9(1): 3752, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842559

RESUMEN

Development requires the implementation of a plethora of molecular mechanisms, involving a large set of genes to ensure proper cell differentiation, morphogenesis of tissues and organs as well as the growth of the organism. Genome duplication and resulting paralogs are considered to provide the raw genetic materials important for new adaptation opportunities and boosting evolutionary innovation. The present study investigated paralogous genes, involved in three-spined stickleback (Gasterosteus aculeatus) development. Therefore, the transcriptomes of five early stages comprising developmental leaps were explored. Obtained expression profiles reflected the embryo's needs at different stages. Early stages, such as the morula stage comprised transcripts mainly involved in energy requirements while later stages were mostly associated with GO terms relevant to organ development and morphogenesis. The generated transcriptome profiles were further explored for differential expression of known and new paralogous genes. Special attention was given to hox genes, with hoxa13a being of particular interest and to pigmentation genes where itgb1, involved in the melanophore development, displayed a complementary expression pattern throughout studied stages. Knowledge obtained by untangling specific paralogous gene functions during development might not only significantly contribute to the understanding of teleost ontogenesis but might also shed light on paralogous gene evolution.


Asunto(s)
Proteínas de Peces/genética , Perfilación de la Expresión Génica/métodos , Smegmamorpha/embriología , Adaptación Fisiológica , Animales , Desarrollo Embrionario , Evolución Molecular , Femenino , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Integrina beta1/genética , Masculino , Análisis de Secuencia de ARN , Smegmamorpha/genética
14.
Environ Toxicol Chem ; 37(6): 1723-1733, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29488651

RESUMEN

Based on the results of a Horizon Scanning exercise sponsored by the Society of Environmental Toxicology and Chemistry that focused on advancing the adverse outcome pathway (AOP) framework, the development of guidance related to AOP network development was identified as a critical need. This not only included questions focusing directly on AOP networks, but also on related topics such as mixture toxicity assessment and the implementation of feedback loops within the AOP framework. A set of two articles has been developed to begin exploring these concepts. In the present article (part I), we consider the derivation of AOP networks in the context of how it differs from the development of individual AOPs. We then propose the use of filters and layers to tailor AOP networks to suit the needs of a given research question or application. We briefly introduce a number of analytical approaches that may be used to characterize the structure of AOP networks. These analytical concepts are further described in a dedicated, complementary article (part II). Finally, we present a number of case studies that illustrate concepts underlying the development, analysis, and application of AOP networks. The concepts described in the present article and in its companion article (which focuses on AOP network analytics) are intended to serve as a starting point for further development of the AOP network concept, and also to catalyze AOP network development and application by the different stakeholder communities. Environ Toxicol Chem 2018;37:1723-1733. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Asunto(s)
Rutas de Resultados Adversos , Animales , Redes de Comunicación de Computadores , Ecotoxicología/métodos , Hígado Graso/complicaciones , Hígado Graso/metabolismo , Humanos , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Hormonas Tiroideas/sangre
15.
Environ Toxicol Chem ; 37(6): 1734-1748, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29492998

RESUMEN

Toxicological responses to stressors are more complex than the simple one-biological-perturbation to one-adverse-outcome model portrayed by individual adverse outcome pathways (AOPs). Consequently, the AOP framework was designed to facilitate de facto development of AOP networks that can aid in the understanding and prediction of pleiotropic and interactive effects more common to environmentally realistic, complex exposure scenarios. The present study introduces nascent concepts related to the qualitative analysis of AOP networks. First, graph theory-based approaches for identifying important topological features are illustrated using 2 example AOP networks derived from existing AOP descriptions. Second, considerations for identifying the most significant path(s) through an AOP network from either a biological or risk assessment perspective are described. Finally, approaches for identifying interactions among AOPs that may result in additive, synergistic, or antagonistic responses (or previously undefined emergent patterns of response) are introduced. Along with a companion article (part I), these concepts set the stage for the development of tools and case studies that will facilitate more rigorous analysis of AOP networks, and the utility of AOP network-based predictions, for use in research and regulatory decision-making. The present study addresses one of the major themes identified through a Society of Environmental Toxicology and Chemistry Horizon Scanning effort focused on advancing the AOP framework. Environ Toxicol Chem 2018;37:1734-1748. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Asunto(s)
Rutas de Resultados Adversos , Animales , Investigación Biomédica/métodos , Redes de Comunicación de Computadores , Ecotoxicología/métodos , Humanos , Proyectos de Investigación
16.
Gen Comp Endocrinol ; 257: 97-105, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28779857

RESUMEN

Female three-spined sticklebacks are batch spawners laying eggs in a nest built by the male. We sampled female sticklebacks at different time points, when they were ready to spawn and 6, 24, 48 and 72h post-spawning (hps) with a male. Following spawning, almost all females (15 out of 19) had ovulated eggs again at Day 3 post-spawning (72hps). At sampling, plasma, brain and pituitaries were collected, and the ovary and liver were weighed. Testosterone (T) and estradiol (E2) were measured by radioimmunoassay. Moreover, the mRNA levels of follicle-stimulating hormone (fsh-ß) and luteinizing hormone (lh-ß) in the pituitary, and of the gonadotropin-releasing hormones (GnRHs: gnrh2, gnrh3) and kisspeptin (kiss2) and its G protein-coupled receptor (gpr54) in the brain were measured by real-time qPCR. Ovarian weights peaked in "ready to spawn" females, dropped after spawning, before again progressively increasing from 6 to 72hps. Plasma T levels showed peaks at 24 and 48hps and decreased at 72hps, while E2 levels increased already at 6hps and remained at high levels up to 48hps. There was a strong positive correlation between T and E2 levels over the spawning cycle. Pituitary lh-ß mRNA levels showed a peak at 48hps, while fsh-ß did not change. The neuropeptides and gpr54 did not show any changes. The changes in T and E2 over the stickleback spawning cycle were largely consistent with those found in other multiple-spawning fishes whereas the marked correlation between T and E2 does not support T having other major roles over the cycle than being a precursor for E2.


Asunto(s)
Hormonas/metabolismo , Reproducción/fisiología , Smegmamorpha/fisiología , Animales , Peso Corporal , Encéfalo/metabolismo , Femenino , Gónadas/metabolismo , Hormonas/sangre , Hígado/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/metabolismo , Smegmamorpha/sangre , Smegmamorpha/genética
17.
Rev Environ Contam Toxicol ; 245: 65-127, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29119384

RESUMEN

Tributyltin (TBT) has been recognized as an endocrine disrupting chemical (EDC) for several decades. However, only in the last decade, was its primary endocrine mechanism of action (MeOA) elucidated-interactions with the nuclear retinoid-X receptor (RXR), peroxisome proliferator-activated receptor γ (PPARγ), and their heterodimers. This molecular initiating event (MIE) alters a range of reproductive, developmental, and metabolic pathways at the organism level. It is noteworthy that a variety of MeOAs have been proposed over the years for the observed endocrine-type effects of TBT; however, convincing data for the MIE was provided only recently and now several researchers have confirmed and refined the information on this MeOA. One of the most important lessons learned from years of research on TBT concerns apparent species sensitivity. Several aspects such as the rates of uptake and elimination, chemical potency, and metabolic capacity are all important for identifying the most sensitive species for a given chemical, including EDCs. For TBT, much of this was discovered by trial and error, hence important relationships and important sensitive taxa were not identified until several decades after its introduction to the environment. As recognized for many years, TBT-induced responses are known to occur at very low concentrations for molluscs, a fact that has more recently also been observed in fish species. This review explores the MeOA and effects of TBT in different species (aquatic molluscs and other invertebrates, fish, amphibians, birds, and mammals) according to the OECD Conceptual Framework for Endocrine Disruptor Testing and Assessment (CFEDTA). The information gathered on biological effects that are relevant for populations of aquatic animals was used to construct Species Sensitivity Distributions (SSDs) based on No Observed Effect Concentrations (NOECs) and Lowest Observed Effect Concentrations (LOECs). Fish appear at the lower end of these distributions, showing that they are as sensitive as molluscs, and for some species, even more sensitive. Concentrations in the range of 1 ng/L for water exposure (10 ng/g for whole-body burden) have been shown to elicit endocrine-type responses, whereas mortality occurs at water concentrations ten times higher. Current screening and assessment methodologies as compiled in the OECD CFEDTA are able to identify TBT as a potent endocrine disruptor with a high environmental risk for the original use pattern. If those approaches had been available when TBT was introduced to the market, it is likely that its use would have been regulated sooner, thus avoiding the detrimental effects on marine gastropod populations and communities as documented over several decades.


Asunto(s)
Ecología/tendencias , Disruptores Endocrinos/toxicidad , Exposición a Riesgos Ambientales/análisis , Compuestos de Trialquiltina/toxicidad , Animales , Disruptores Endocrinos/análisis , Disruptores Endocrinos/metabolismo , Exposición a Riesgos Ambientales/efectos adversos , Guías como Asunto , Humanos , Agencias Internacionales , Medición de Riesgo , Pruebas de Toxicidad , Compuestos de Trialquiltina/análisis , Compuestos de Trialquiltina/metabolismo
18.
Environ Pollut ; 234: 279-287, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29182972

RESUMEN

People living a subsistence lifestyle in the Arctic are highly exposed to persistent organic pollutants, including polychlorinated biphenyls (PCBs). Formerly Used Defense (FUD) sites are point sources of PCB pollution; the Arctic contains thousands of FUD sites, many co-located with indigenous villages. We investigated PCB profiles and biological effects in freshwater fish (Alaska blackfish [Dallia pectoralis] and ninespine stickleback [Pungitius pungitius]) living upstream and downstream of the Northeast Cape FUD site on St. Lawrence Island in the Bering Sea. Despite extensive site remediation, fish remained contaminated with PCBs. Vitellogenin concentrations in males indicated exposure to estrogenic contaminants, and some fish were hypothyroid. Downstream fish showed altered DNA methylation in gonads and altered gene expression related to DNA replication, response to DNA damage, and cell signaling. This study demonstrates that, even after site remediation, contaminants from Cold War FUD sites in remote regions of the Arctic remain a potential health threat to local residents - in this case, Yupik people who had no influence over site selection and use by the United States military.


Asunto(s)
Disruptores Endocrinos/farmacología , Alimentos Marinos/análisis , Smegmamorpha/genética , Smegmamorpha/metabolismo , Alaska , Animales , Regiones Árticas , Disruptores Endocrinos/análisis , Disruptores Endocrinos/metabolismo , Restauración y Remediación Ambiental , Femenino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Contaminación de Alimentos/análisis , Inocuidad de los Alimentos , Agua Dulce/análisis , Humanos , Islas , Masculino , Bifenilos Policlorados/análisis , Smegmamorpha/crecimiento & desarrollo , Vitelogeninas/genética , Vitelogeninas/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/farmacología
19.
J Steroid Biochem Mol Biol ; 178: 13-21, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29107179

RESUMEN

Previous studies have shown that mussels can pick up 17ß-estradiol [E2] and testosterone [T] from water, metabolize them and conjugate them to fatty acids (esterification), leading to their accumulation in tissue. A key requirement for the esterification process is that a steroid must have a 'reactive' hydroxyl group to conjugate to a fatty acid (which in T, and probably E2, is the ß-hydroxyl group on carbon 17). Progesterone (P) lacks any hydroxyl groups and theoretically cannot be esterified and hence should not accumulate in mussels in the same way as E2 or T. However, it is already known that mussels have an enzyme that can achieve 5α-reduction of the A ring of T and P and that there is also another reductase that can transform the 3-oxo group of the 5α-reduced A ring of T into a hydroxyl group. We hypothesized that, although intact P cannot be directly esterified, it might nevertheless be transformed into metabolites that can. To test this hypothesis, we investigated the rate and capacity of uptake, metabolism and potential depuration of tritiated P by the common mussel, Mytilus spp. We found that tritiated P was taken up from water at a similar rate to E2 and T (mean clearance rate 49mL-1 animal-1h-1) and that, as found with the other steroids, the rate of uptake could not be saturated by the addition of non-radioactive steroid (even at 7.6µgL-1). We found that up to 66% of the radioactivity that was taken up was present in the ester fraction, suggesting that hydroxylation of the P must indeed have occurred. We then definitively identified two metabolites in the ester fraction: 5α-pregnane-3ß,20ß-diol and 3ß-hydroxy-5α-pregnan-20-one. These same two steroids were also present in the free steroid fraction. Intact P was not detected in either of the fractions. When undergoing depuration (under semi-static conditions), the radioactivity in the ester fractions remained at the same concentration in the animals for at least 10 days. Our findings suggest that the lack of reactive hydroxyl groups on P does not preclude it from being taken up, metabolized and subsequently stored. Many questions remain, not least of which is why, when P seems to be so rapidly metabolized, two previous studies on mussels have reported concentrations of up to 30ngg-1 wet weight of P in their flesh.


Asunto(s)
Mytilus/metabolismo , Progesterona/metabolismo , Agua/química , Animales , Biotransformación , Esterificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...