Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(10): e2317147121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422019

RESUMEN

Mutations in genes encoding transcription factors inactivate or generate ectopic activities to instigate pathogenesis. By disrupting hematopoietic stem/progenitor cells, GATA2 germline variants create a bone marrow failure and leukemia predisposition, GATA2 deficiency syndrome, yet mechanisms underlying the complex phenotypic constellation are unresolved. We used a GATA2-deficient progenitor rescue system to analyze how genetic variation influences GATA2 functions. Pathogenic variants impaired, without abrogating, GATA2-dependent transcriptional regulation. Variants promoted eosinophil and repressed monocytic differentiation without regulating mast cell and erythroid differentiation. While GATA2 and T354M required the DNA-binding C-terminal zinc finger, T354M disproportionately required the N-terminal finger and N terminus. GATA2 and T354M activated a CCAAT/Enhancer Binding Protein-ε (C/EBPε) enhancer, creating a feedforward loop operating with the T-cell Acute Lymphocyte Leukemia-1 (TAL1) transcription factor. Elevating C/EBPε partially normalized hematopoietic defects of GATA2-deficient progenitors. Thus, pathogenic germline variation discriminatively spares or compromises transcription factor attributes, and retaining an obligate enhancer mechanism distorts a multilineage differentiation program.


Asunto(s)
Leucemia , Secuencias Reguladoras de Ácidos Nucleicos , Humanos , Diferenciación Celular/genética , Genotipo , Células Madre Hematopoyéticas , Factor de Transcripción GATA2/genética
2.
iScience ; 26(4): 106297, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36950124

RESUMEN

Innate immune signaling protects against pathogens, controls hematopoietic development, and functions in oncogenesis, yet the relationship between these mechanisms is undefined. Downregulating the GATA2 transcription factor in fetal hematopoietic progenitor cells upregulates genes encoding innate immune regulators, increases Interferon-γ (IFNγ) signaling, and disrupts differentiation. We demonstrate that deletion of an enhancer that confers GATA2 expression in fetal progenitors elevated Toll-like receptor (TLR) TLR1/2 and TLR2/6 expression and signaling. Rescue by expressing GATA2 downregulated elevated TLR signaling. IFNγ amplified TLR1/2 and TLR2/6 signaling in GATA2-deficient progenitors, synergistically activating cytokine/chemokine genes and elevating cytokine/chemokine production in myeloid cell progeny. Genomic analysis of how innate immune signaling remodels the GATA2-deficient progenitor transcriptome revealed hypersensitive responses at innate immune genes harboring motifs for signal-dependent transcription factors and factors not linked to these mechanisms. As GATA2 establishes a transcriptome that constrains innate immune signaling, insufficient GATA2 renders fetal progenitor cells hypersensitive to innate immune signaling.

3.
J Clin Invest ; 133(7)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36809258

RESUMEN

Although certain human genetic variants are conspicuously loss of function, decoding the impact of many variants is challenging. Previously, we described a patient with leukemia predisposition syndrome (GATA2 deficiency) with a germline GATA2 variant that inserts 9 amino acids between the 2 zinc fingers (9aa-Ins). Here, we conducted mechanistic analyses using genomic technologies and a genetic rescue system with Gata2 enhancer-mutant hematopoietic progenitor cells to compare how GATA2 and 9aa-Ins function genome-wide. Despite nuclear localization, 9aa-Ins was severely defective in occupying and remodeling chromatin and regulating transcription. Variation of the inter-zinc finger spacer length revealed that insertions were more deleterious to activation than repression. GATA2 deficiency generated a lineage-diverting gene expression program and a hematopoiesis-disrupting signaling network in progenitors with reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) and elevated IL-6 signaling. As insufficient GM-CSF signaling caused pulmonary alveolar proteinosis and excessive IL-6 signaling promoted bone marrow failure and GATA2 deficiency patient phenotypes, these results provide insight into mechanisms underlying GATA2-linked pathologies.


Asunto(s)
Deficiencia GATA2 , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Deficiencia GATA2/genética , Interleucina-6/genética , Hematopoyesis/genética , Expresión Génica , Dedos de Zinc/genética , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo
5.
Blood Adv ; 4(18): 4584-4592, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32960960

RESUMEN

The surge of human genetic information, enabled by increasingly facile and economically feasible genomic technologies, has accelerated discoveries on the relationship of germline genetic variation to hematologic diseases. For example, germline variation in GATA2, encoding a vital transcriptional regulator of multilineage hematopoiesis, creates a predisposition to bone marrow failure and acute myeloid leukemia termed GATA2 deficiency syndrome. More than 300 GATA2 variants representing missense, truncating, and noncoding enhancer mutations have been documented. Although these variants can diminish GATA2 expression and/or function, the functional ramifications of many variants are unknown. Studies using genetic rescue and knockin mouse systems have established that GATA2 mutations differentially affect molecular processes in distinct target genes and within a single target cell. Considering that target genes for a transcription factor can differ in sensitivity to altered levels of the factor, and transcriptional mechanisms are often cell type specific, the context-dependent consequences of GATA2 mutations in experimental systems portend the complex phenotypes and interindividual variation of GATA2 deficiency syndrome. This review documents GATA2 human genetics and the state of efforts to traverse from physiological insights to pathogenic mechanisms.


Asunto(s)
Deficiencia GATA2 , Enfermedades Hematológicas , Leucemia Mieloide Aguda , Animales , Factor de Transcripción GATA2/genética , Hematopoyesis/genética , Humanos , Ratones , Mutación
6.
J Exp Med ; 217(11)2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32736380

RESUMEN

Stem and progenitor cell fate transitions constitute key decision points in organismal development that enable access to a developmental path or actively preclude others. Using the hematopoietic system, we analyzed the relative importance of cell fate-promoting mechanisms versus negating fate-suppressing mechanisms to engineer progenitor cells with multilineage differentiation potential. Deletion of the murine Gata2-77 enhancer, with a human equivalent that causes leukemia, downregulates the transcription factor GATA2 and blocks progenitor differentiation into erythrocytes, megakaryocytes, basophils, and granulocytes, but not macrophages. Using multiomics and single-cell analyses, we demonstrated that the enhancer orchestrates a balance between pro- and anti-fate circuitry in single cells. By increasing GATA2 expression, the enhancer instigates a fate-promoting mechanism while abrogating an innate immunity-linked, fate-suppressing mechanism. During embryogenesis, the suppressing mechanism dominated in enhancer mutant progenitors, thus yielding progenitors with a predominant monocytic differentiation potential. Coordinating fate-promoting and -suppressing circuits therefore averts deconstruction of a multifate system into a monopotent system and maintains critical progenitor heterogeneity and functionality.


Asunto(s)
Diferenciación Celular/genética , Factor de Transcripción GATA2/genética , Eliminación de Gen , Mutación de Línea Germinal , Células Madre/fisiología , Adolescente , Adulto , Animales , Basófilos/fisiología , Células Cultivadas , Elementos de Facilitación Genéticos/genética , Eritrocitos/fisiología , Femenino , Hematopoyesis/genética , Humanos , Macrófagos/fisiología , Megacariocitos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de la Célula Individual
7.
Proc Natl Acad Sci U S A ; 115(43): E10109-E10118, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30301799

RESUMEN

By inducing the generation and function of hematopoietic stem and progenitor cells, the master regulator of hematopoiesis GATA-2 controls the production of all blood cell types. Heterozygous GATA2 mutations cause immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. GATA2 disease mutations commonly disrupt amino acid residues that mediate DNA binding or cis-elements within a vital GATA2 intronic enhancer, suggesting a haploinsufficiency mechanism of pathogenesis. Mutations also occur in GATA2 coding regions distinct from the DNA-binding carboxyl-terminal zinc finger (C-finger), including the amino-terminal zinc finger (N-finger), and N-finger function is not established. Whether distinct mutations differentially impact GATA-2 mechanisms is unknown. Here, we demonstrate that N-finger mutations decreased GATA-2 chromatin occupancy and attenuated target gene regulation. We developed a genetic complementation assay to quantify GATA-2 function in myeloid progenitor cells from Gata2 -77 enhancer-mutant mice. GATA-2 complementation increased erythroid and myeloid differentiation. While GATA-2 disease mutants were not competent to induce erythroid differentiation of Lin-Kit+ myeloid progenitors, unexpectedly, they promoted myeloid differentiation and proliferation. As the myelopoiesis-promoting activity of GATA-2 mutants exceeded that of GATA-2, GATA2 disease mutations are not strictly inhibitory. Thus, we propose that the haploinsufficiency paradigm does not fully explain GATA-2-linked pathogenesis, and an amalgamation of qualitative and quantitative defects instigated by GATA2 mutations underlies the complex phenotypes of GATA-2-dependent pathologies.


Asunto(s)
Factor de Transcripción GATA2/genética , Leucemia Mieloide Aguda/genética , Mutación/genética , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación de la Expresión Génica/genética , Haploinsuficiencia/genética , Hematopoyesis/genética , Humanos , Ratones , Síndromes Mielodisplásicos/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Células Madre/metabolismo , Dedos de Zinc/genética
8.
Cell Rep ; 20(12): 2966-2979, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28930689

RESUMEN

Hematopoietic development requires the transcription factor GATA-2, and GATA-2 mutations cause diverse pathologies, including leukemia. GATA-2-regulated enhancers increase Gata2 expression in hematopoietic stem/progenitor cells and control hematopoiesis. The +9.5-kb enhancer activates transcription in endothelium and hematopoietic stem cells (HSCs), and its deletion abrogates HSC generation. The -77-kb enhancer activates transcription in myeloid progenitors, and its deletion impairs differentiation. Since +9.5-/- embryos are HSC deficient, it was unclear whether the +9.5 functions in progenitors or if GATA-2 expression in progenitors solely requires -77. We further dissected the mechanisms using -77;+9.5 compound heterozygous (CH) mice. The embryonic lethal CH mutation depleted megakaryocyte-erythrocyte progenitors (MEPs). While the +9.5 suffices for HSC generation, the -77 and +9.5 must reside on one allele to induce MEPs. The -77 generated burst-forming unit-erythroid through the induction of GATA-1 and other GATA-2 targets. The enhancer circuits controlled signaling pathways that orchestrate a GATA factor-dependent blood development program.


Asunto(s)
Células Sanguíneas/metabolismo , Elementos de Facilitación Genéticos , Hematopoyesis/genética , Animales , Diferenciación Celular/genética , Embrión de Mamíferos/metabolismo , Epistasis Genética , Células Eritroides/citología , Células Eritroides/metabolismo , Feto/metabolismo , Factor de Transcripción GATA2/genética , Hígado/embriología , Hígado/metabolismo , Megacariocitos/citología , Megacariocitos/metabolismo , Ratones , Transducción de Señal , Transcriptoma/genética
9.
Dev Cell ; 42(3): 213-225.e4, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28787589

RESUMEN

An enhancer with amalgamated E-box and GATA motifs (+9.5) controls expression of the regulator of hematopoiesis GATA-2. While similar GATA-2-occupied elements are common in the genome, occupancy does not predict function, and GATA-2-dependent genetic networks are incompletely defined. A "+9.5-like" element resides in an intron of Samd14 (Samd14-Enh) encoding a sterile alpha motif (SAM) domain protein. Deletion of Samd14-Enh in mice strongly decreased Samd14 expression in bone marrow and spleen. Although steady-state hematopoiesis was normal, Samd14-Enh-/- mice died in response to severe anemia. Samd14-Enh stimulated stem cell factor/c-Kit signaling, which promotes erythrocyte regeneration. Anemia activated Samd14-Enh by inducing enhancer components and enhancer chromatin accessibility. Thus, a GATA-2/anemia-regulated enhancer controls expression of an SAM domain protein that confers survival in anemia. We propose that Samd14-Enh and an ensemble of anemia-responsive enhancers are essential for erythrocyte regeneration in stress erythropoiesis, a vital process in pathologies, including ß-thalassemia, myelodysplastic syndrome, and viral infection.


Asunto(s)
Anemia/metabolismo , Elementos de Facilitación Genéticos , Eritrocitos/metabolismo , Eritropoyesis , Factores de Transcripción GATA/metabolismo , Proteínas/genética , Secuencias de Aminoácidos , Animales , Proliferación Celular , Supervivencia Celular , Eritrocitos/citología , Factores de Transcripción GATA/genética , Ratones , Proteínas/metabolismo , Activación Transcripcional
10.
Blood ; 129(15): 2092-2102, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28179282

RESUMEN

The discovery of the GATA binding protein (GATA factor) transcription factor family revolutionized hematology. Studies of GATA proteins have yielded vital contributions to our understanding of how hematopoietic stem and progenitor cells develop from precursors, how progenitors generate red blood cells, how hemoglobin synthesis is regulated, and the molecular underpinnings of nonmalignant and malignant hematologic disorders. This thrilling journey began with mechanistic studies on a ß-globin enhancer- and promoter-binding factor, GATA-1, the founding member of the GATA family. This work ushered in the cloning of related proteins, GATA-2-6, with distinct and/or overlapping expression patterns. Herein, we discuss how the hematopoietic GATA factors (GATA-1-3) function via a battery of mechanistic permutations, which can be GATA factor subtype, cell type, and locus specific. Understanding this intriguing protein family requires consideration of how the mechanistic permutations are amalgamated into circuits to orchestrate processes of interest to the hematologist and more broadly.


Asunto(s)
Elementos de Facilitación Genéticos , Factores de Transcripción GATA , Regulación Neoplásica de la Expresión Génica , Neoplasias Hematológicas , Células Madre Hematopoyéticas/metabolismo , Globinas beta , Animales , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Humanos , Globinas beta/biosíntesis , Globinas beta/genética
11.
Cell Rep ; 16(9): 2428-41, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27545880

RESUMEN

The master regulatory transcription factor GATA-2 triggers hematopoietic stem and progenitor cell generation. GATA2 haploinsufficiency is implicated in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), and GATA2 overexpression portends a poor prognosis for AML. However, the constituents of the GATA-2-dependent genetic network mediating pathogenesis are unknown. We described a p38-dependent mechanism that phosphorylates GATA-2 and increases GATA-2 target gene activation. We demonstrate that this mechanism establishes a growth-promoting chemokine/cytokine circuit in AML cells. p38/ERK-dependent GATA-2 phosphorylation facilitated positive autoregulation of GATA2 transcription and expression of target genes, including IL1B and CXCL2. IL-1ß and CXCL2 enhanced GATA-2 phosphorylation, which increased GATA-2-mediated transcriptional activation. p38/ERK-GATA-2 stimulated AML cell proliferation via CXCL2 induction. As GATA2 mRNA correlated with IL1B and CXCL2 mRNAs in AML-M5 and high expression of these genes predicted poor prognosis of cytogenetically normal AML, we propose that the circuit is functionally important in specific AML contexts.


Asunto(s)
Retroalimentación Fisiológica , Factor de Transcripción GATA2/genética , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Línea Celular Tumoral , Proliferación Celular , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Factor de Transcripción GATA2/metabolismo , Haploinsuficiencia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Cariotipificación , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Pronóstico , Transducción de Señal , Análisis de Supervivencia , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Elife ; 52016 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-27543448

RESUMEN

Since the highly conserved exosome complex mediates the degradation and processing of multiple classes of RNAs, it almost certainly controls diverse biological processes. How this post-transcriptional RNA-regulatory machine impacts cell fate decisions and differentiation is poorly understood. Previously, we demonstrated that exosome complex subunits confer an erythroid maturation barricade, and the erythroid transcription factor GATA-1 dismantles the barricade by transcriptionally repressing the cognate genes. While dissecting requirements for the maturation barricade in Mus musculus, we discovered that the exosome complex is a vital determinant of a developmental signaling transition that dictates proliferation/amplification versus differentiation. Exosome complex integrity in erythroid precursor cells ensures Kit receptor tyrosine kinase expression and stem cell factor/Kit signaling, while preventing responsiveness to erythropoietin-instigated signals that promote differentiation. Functioning as a gatekeeper of this developmental signaling transition, the exosome complex controls the massive production of erythroid cells that ensures organismal survival in homeostatic and stress contexts.

13.
Mol Cell Biol ; 35(12): 2073-87, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25855754

RESUMEN

Erythropoiesis, in which committed progenitor cells generate millions of erythrocytes daily, involves dramatic changes in the chromatin structure and transcriptome of erythroblasts, prior to their enucleation. While the involvement of the master-regulatory transcription factors GATA binding protein 1 (GATA-1) and GATA-2 in this process is established, the mechanistic contributions of many chromatin-modifying/remodeling enzymes in red cell biology remain enigmatic. We demonstrated that SetD8, a histone methyltransferase that catalyzes monomethylation of histone H4 at lysine 20 (H4K20me1), is a context-dependent GATA-1 corepressor in erythroid cells. To determine whether SetD8 controls erythroid maturation and/or function, we used a small hairpin RNA (shRNA)-based loss-of-function strategy in a primary murine erythroblast culture system. In this system, SetD8 promoted erythroblast maturation and survival, and this did not involve upregulation of the established regulator of erythroblast survival Bcl-x(L). SetD8 catalyzed H4K20me1 at a critical Gata2 cis element and restricted occupancy by an enhancer of Gata2 transcription, Scl/TAL1, thereby repressing Gata2 transcription. Elevating GATA-2 levels in erythroid precursors yielded a maturation block comparable to that induced by SetD8 downregulation. As lowering GATA-2 expression in the context of SetD8 knockdown did not rescue erythroid maturation, we propose that SetD8 regulation of erythroid maturation involves multiple target genes. These results establish SetD8 as a determinant of erythroid cell maturation and provide a framework for understanding how a broadly expressed histone-modifying enzyme mediates cell-type-specific GATA factor function.


Asunto(s)
Epigénesis Genética , Células Eritroides/citología , Factor de Transcripción GATA2/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Células Eritroides/metabolismo , Eritropoyesis , Factor de Transcripción GATA2/metabolismo , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Ratones , Activación Transcripcional
14.
EMBO Rep ; 15(9): 938-47, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25056917

RESUMEN

Disease mutations provide unique opportunities to decipher protein and cell function. Mutations in the master regulator of hematopoiesis GATA-2 underlie an immunodeficiency associated with myelodysplastic syndrome and leukemia. We discovered that a GATA-2 disease mutant (T354M) defective in chromatin binding was hyperphosphorylated by p38 mitogen-activated protein kinase. p38 also induced multisite phosphorylation of wild-type GATA-2, which required a single phosphorylated residue (S192). Phosphorylation of GATA-2, but not T354M, stimulated target gene expression. While crosstalk between oncogenic Ras and GATA-2 has been implicated as an important axis in cancer biology, its mechanistic underpinnings are unclear. Oncogenic Ras enhanced S192-dependent GATA-2 phosphorylation, nuclear foci localization, and transcriptional activation. These studies define a mechanism that controls a key regulator of hematopoiesis and a dual mode of impairing GATA-2-dependent genetic networks: mutational disruption of chromatin occupancy yielding insufficient GATA-2, and oncogenic Ras-mediated amplification of GATA-2 activity.


Asunto(s)
Factor de Transcripción GATA2/biosíntesis , Genes ras/genética , Leucemia/genética , Proteínas Quinasas p38 Activadas por Mitógenos/biosíntesis , Línea Celular Tumoral , Cromatina/genética , Factor de Transcripción GATA2/genética , Regulación Leucémica de la Expresión Génica/genética , Hematopoyesis/genética , Humanos , Leucemia/patología , Mutación , Síndromes Mielodisplásicos , Fosforilación , Regiones Promotoras Genéticas , Proteínas Quinasas p38 Activadas por Mitógenos/genética
15.
Cold Spring Harb Perspect Med ; 3(9): a015412, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23838521

RESUMEN

The physiological switch in expression of the embryonic, fetal, and adult ß-like globin genes has garnered enormous attention from investigators interested in transcriptional mechanisms and the molecular basis of hemoglobinopathies. These efforts have led to the discovery of cell type-specific transcription factors, unprecedented mechanisms of transcriptional coregulator function, genome biology principles, unique contributions of nuclear organization to transcription and cell function, and promising therapeutic targets. Given the vast literature accrued on this topic, this article will focus on the master regulator of erythroid cell development and function GATA-1, its associated proteins, and its frontline role in controlling hemoglobin synthesis. GATA-1 is a crucial regulator of genes encoding hemoglobin subunits and heme biosynthetic enzymes. GATA-1-dependent mechanisms constitute an essential regulatory core that nucleates additional mechanisms to achieve the physiological control of hemoglobin synthesis.


Asunto(s)
Células Precursoras Eritroides/citología , Factor de Transcripción GATA1/fisiología , Hemoglobinas/biosíntesis , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Hemoglobina Fetal/biosíntesis , Hemoglobina Fetal/genética , Factor de Transcripción GATA1/genética , Hemoglobinopatías/genética , Hemoglobinas/genética , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Proteínas Represoras , Factores de Transcripción/fisiología , Globinas beta/biosíntesis , Globinas beta/genética
16.
Nucleic Acids Res ; 40(13): 5819-31, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22492510

RESUMEN

Numerous examples exist of how disrupting the actions of physiological regulators of blood cell development yields hematologic malignancies. The master regulator of hematopoietic stem/progenitor cells GATA-2 was cloned almost 20 years ago, and elegant genetic analyses demonstrated its essential function to promote hematopoiesis. While certain GATA-2 target genes are implicated in leukemogenesis, only recently have definitive insights emerged linking GATA-2 to human hematologic pathophysiologies. These pathophysiologies include myelodysplastic syndrome, acute myeloid leukemia and an immunodeficiency syndrome with complex phenotypes including leukemia. As GATA-2 has a pivotal role in the etiology of human cancer, it is instructive to consider mechanisms underlying normal GATA factor function/regulation and how dissecting such mechanisms may reveal unique opportunities for thwarting GATA-2-dependent processes in a therapeutic context. This article highlights GATA factor mechanistic principles, with a heavy emphasis on GATA-1 and GATA-2 functions in the hematopoietic system, and new links between GATA-2 dysregulation and human pathophysiologies.


Asunto(s)
Factores de Transcripción GATA/metabolismo , Neoplasias Hematológicas/genética , Factor de Transcripción GATA2/metabolismo , Neoplasias Hematológicas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...