Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 12604, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35871167

RESUMEN

Fractalkine is one of the CX3C chemokine family, and it is widely expressed in the brain including the hypothalamus. In the brain, fractalkine is expressed in neurons and binds to a CX3C chemokine receptor 1 (CX3CR1) in microglia. The hypothalamus regulates energy homeostasis of which dysregulation is associated with obesity. Therefore, we examined whether fractalkine-CX3CR1 signalling involved in regulating food intake and hypothalamic inflammation associated with obesity pathogenesis. In the present study, fractalkine significantly reduced food intake induced by several experimental stimuli and significantly increased brain-derived neurotrophic factor (BDNF) mRNA expression in the hypothalamus. Moreover, tyrosine receptor kinase B (TrkB) antagonist impaired fractalkine-induced anorexigenic actions. In addition, compared with wild-type mice, CX3CR1-deficient mice showed a significant increase in food intake and a significant decrease in BDNF mRNA expression in the hypothalamus. Mice fed a high-fat diet (HFD) for 16 weeks showed hypothalamic inflammation and reduced fractalkine mRNA expression in the hypothalamus. Intracerebroventricular administration of fractalkine significantly suppressed HFD-induced hypothalamic inflammation in mice. HFD intake for 4 weeks caused hypothalamic inflammation in CX3CR1-deficient mice, but not in wild-type mice. These findings suggest that fractalkine-CX3CR1 signalling induces anorexigenic actions via activation of the BDNF-TrkB pathway and suppresses HFD-induced hypothalamic inflammation in mice.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Quimiocina CX3CL1 , Animales , Antiinflamatorios , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología , Obesidad/metabolismo , ARN Mensajero
2.
Front Nutr ; 9: 852355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571950

RESUMEN

The effects of degalactosylated whey protein on lipopolysaccharide (LPS)-induced inflammatory responses in mice were observed in comparison with intact whey protein. Intraperitoneal administration of both intact and degalactosylated whey proteins for 5 days did not affect body weight and food intake in mice. On day 6, intraperitoneal administration of LPS induced a marked decrease in body weight 4 h later. The LPS-induced decrease in body weight was significantly suppressed by the administration of degalactosylated whey protein, but not intact whey protein. Administration of LPS also significantly increase plasma tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) levels, which were significantly suppressed by the administration of degalactosylated whey protein, but not intact whey protein. Moreover, the application of degalactosylated whey protein to RAW264.7 cells significantly reduced mRNA expression of toll-like receptor 4 (TLR4) and significantly increased mRNA expression of mitogen-activated protein kinase phosphatase-1 (MKP-1). The marked increased expression of TNF-α and IL-1ß in response to LPS in RAW264.7 cells was significantly suppressed by the application of degalactosylated whey protein. These results suggest that degalactosylated whey protein suppresses the effects of LPS in part by decreasing in TLR4 and increasing in MKP-1.

3.
Neurosci Res ; 177: 94-102, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34971637

RESUMEN

While hypothalamic leptin resistance can occur prior to establishment of obesity, clarification is needed as to whether the impaired response to leptin in the reward-related nuclei occurs independently of obesity. To answer this question, we attempted to dissociate the normally coexisting leptin resistance from obesity. We investigated phenotypes of leptin-overexpressing transgenic mice fed for 1 week with 60 % high-fat diet (HFD) (LepTg-HFD1W mice). After 1 week, we observed that LepTg-HFD1W mice weighed as same as wild type (WT) mice fed standard chow diet (CD) for 1 week (WT-CD1W mice). However, compared to WT-CD1W mice, LepTg-HFD1W mice exhibited attenuated leptin-induced anorexia, decreased leptin-induced c-fos immunostaining in nucleus accumbens (NAc), one of important site of reward system, decreased leptin-stimulated pSTAT3 immunostaining in hypothalamus. Furthermore, neither sucrose nor lipid preference was suppressed by leptin in LepTg-HFD1W mice. On the contrary, leptin significantly suppressed both preferences in WT mice fed HFD (WT-HFD1 W mice). These results indicate that leptin responsiveness decreases in NAc independently of obesity. Additionally, in this situation, suppressive effect of leptin on the hedonic feeding results in impaired regulation. Such findings suggest the impaired leptin responsiveness in NAc partially contributes to dysregulated hedonic feeding behavior independently of obesity.


Asunto(s)
Leptina , Núcleo Accumbens , Animales , Peso Corporal , Dieta Alta en Grasa , Leptina/genética , Leptina/metabolismo , Leptina/farmacología , Lípidos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Núcleo Accumbens/metabolismo , Obesidad/genética , Sacarosa
4.
Artículo en Inglés | MEDLINE | ID: mdl-34517054

RESUMEN

The mesolimbic dopamine system is important for the rewarding and motivational aspects of consuming rewarding and palatable food. Nicotinic receptors are present in the mesolimbic dopamine system and enhance the reinforcement of drugs of abuse. In this study, we examined the involvement of nicotine receptor subtypes in sucrose addiction in a sucrose preference paradigm. Sucrose preference and intake in mice increased in proportion to stepwise increases in sucrose concentrations. Moreover, sucrose preference and intake following sucrose withdrawal in mice were increased in comparison with the first set of trials. In the present study, α7, but not α4 and ß2, nicotinic receptor subunit mRNA was decreased in the nucleus accumbens, but not in the hypothalamus, after sucrose withdrawal and subsequent sucrose intake. Administration of an agonist for α7, but not α4 and ß2, nicotinic receptors suppressed the enhancement of sucrose preference and intake following sucrose withdrawal. These findings indicate that α7 nicotinic receptor activation suppresses sucrose addiction in a sucrose preference test in mice.


Asunto(s)
Conducta Adictiva , Alimentos , Motivación , Sacarosa/administración & dosificación , Receptor Nicotínico de Acetilcolina alfa 7/fisiología , Animales , Encéfalo/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Refuerzo en Psicología , Recompensa , Síndrome de Abstinencia a Sustancias
5.
Heliyon ; 7(10): e08269, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34765767

RESUMEN

Atractylenolide-III (AIII), a sesquiterpene compound isolated from the rhizome of Atractylodes macrocephala, has been reported to have anti-inflammatory effects in the peripheral organs. However, its effects on brain inflammation remain elusive. The present study investigated the effects of AIII on the response to lipopolysaccharide (LPS) in mouse microglia and clarified the underlying mechanism. In this study, treatment of MG6 cells with AIII (100 µM) significantly decreased the mRNA expression and protein levels of toll-like receptor 4 (TLR4). In addition, pretreatment of MG6 cells and primary cultured microglia cells with AIII (100 µM) significantly decreased the mRNA expression and protein levels of tumor necrosis factor-α, interleukin-1ß, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2 induced by LPS (5 ng/mL) without cytotoxicity. Subsequently, pretreatment with AIII significantly suppressed the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun NH2-terminal kinase (JNK) after LPS stimulation in MG6 cells. These results showed that AIII downregulated TLR4 expression, leading to suppression of the p38 MAPK and JNK pathways, which in turn inhibited the production of pro-inflammatory cytokines and enzymes in LPS-stimulated microglia. Our findings, therefore, suggest the potential for AIII as a therapeutic agent for the treatment of brain inflammation, particularly in microglia-associated inflammation.

6.
Pharmacol Rep ; 73(4): 1109-1121, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33835466

RESUMEN

BACKGROUND: Pituitary adenylate cyclase-activating polypeptide (PACAP) plays an essential role in the modulation of astrocyte functions. Although lactate secretion from astrocytes contributes to many forms of neuronal plasticity in the central nervous system, including fear learning and memory, the role of PACAP in lactate secretion from astrocytes is unclear. METHODS: The amygdala and hippocampus of PACAP (+ / +) and PACAP (-/-) mice were acquired 1 h after memory acquisition and recall in the passive avoidance test. The concentration of glycogen and lactate in these regions was measured. The concentration of lactate in the hippocampus's extracellular fluid was also measured by microdialysis during memory acquisition or intracerebroventricular administration of PACAP. RESULTS: We observed that memory acquisition caused a significant decrease in glycogen concentration and increased lactate concentration in the PACAP (+ / +) mice's hippocampus. However, memory acquisition did not increase in the lactate concentration in PACAP (-/-) mice's hippocampus. Further, memory retrieval evoked lactate production in the amygdala and the hippocampus of PACAP (+ / +) mice. Still, there was no significant increase in lactate concentration in the same regions of PACAP (-/-) mice. In vivo microdialysis in rats revealed that the hippocampus's extracellular lactate concentration increased after a single PACAP intracerebroventricular injection. Additionally, the hippocampus's extracellular lactate concentration increased with the memory acquisition in PACAP (+ / +) mice, but not in PACAP (-/-) mice. CONCLUSIONS: PACAP may enhance lactate production and secretion in astrocytes during the acquisition and recall of fear memories.


Asunto(s)
Astrocitos/metabolismo , Miedo/fisiología , Ácido Láctico/metabolismo , Memoria/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiología , Animales , Astrocitos/fisiología , Glucógeno/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Ratones , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley
7.
Artículo en Inglés | MEDLINE | ID: mdl-33568358

RESUMEN

INTRODUCTION: A diet high in saturated fat is well known to affect neuronal function and contribute to cognitive decline in experimental animals and humans. Fractalkine released from neurons acts on its receptor, CX3C chemokine receptor 1 (CX3CR1), in the microglia to regulate several brain functions. The present study addressed whether fractalkine-CX3CR1 signaling in the brain, especially the hippocampus, contributes to the cognitive deficits observed in diet-induced obese (DIO) mice. RESEARCH DESIGN AND METHODS: Mice were given 60% high-fat diet for 16 weeks. The expression of fractalkine and CX3CR1 in the hippocampus, amygdala and prefrontal cortex of DIO mice was analyzed. Cognitive ability in the Y-maze test and hippocampal glutamate receptors and synaptic markers were observed in DIO and CX3CR1 antagonist-treated mice. Regulation of fractalkine and CX3CR1 expression in the hippocampus was examined following administration of a selective insulin-like growth factor-1 (IGF-1) receptor inhibitor and a tyrosine receptor kinase B (TrkB) antagonist in normal mice. RESULTS: DIO mice exhibited significant cognitive deficits in the Y-maze test and decrease in fractalkine and CX3CR1 in the hippocampus and amygdala compared with mice fed a control diet (CD mice). Administration of the CX3CR1 antagonist 18a in normal mice induced significant cognitive deficits in the Y-maze test. DIO mice and CX3CR1 antagonist-treated mice exhibited significant decreases in protein levels of NMDA (N-methyl-D-aspartate) receptor subunit (NR2A), AMPA (α-amino-5-methyl-3-hydroxy-4-isoxazole propionate) receptor subunit (GluR1) and postsynaptic density protein 95 in the hippocampus compared with their respective controls. Furthermore, plasma IGF-1 and hippocampal brain-derived neurotrophic factor were significantly decreased in DIO mice compared with CD mice. Administration of a selective IGF-1 receptor inhibitor and a TrkB antagonist in normal mice significantly decreased fractalkine and CX3CR1 in the hippocampus. CONCLUSIONS: These findings indicate that the cognitive decline observed in DIO mice is due, in part, to reduced fractalkine-CX3CR1 signaling in the corticolimbic system.


Asunto(s)
Quimiocina CX3CL1 , Disfunción Cognitiva , Animales , Encéfalo/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Disfunción Cognitiva/etiología , Ratones , Ratones Obesos , Transducción de Señal
8.
IBRO Rep ; 9: 233-240, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32995659

RESUMEN

Patients with diabetes mellitus are predisposed to cognitive impairment. Fractalkine-CX3CR1 in the brain signaling represents a primary neuron-microglia inter-regulatory system for several brain functions including learning and memory processes. The present study addressed whether fractalkine-CX3CR1 signaling in the hippocampus contributes to the cognitive deficits observed in streptozotocin (STZ)-treated mice. Our results showed that STZ-treated mice exhibited significant cognitive deficits in the Y-maze test, and a decrease in fractalkine and CX3CR1 levels in the hippocampus. Moreover, intracerebroventricular injection of the CX3CR1 antagonist 18a in normal mice induced significant cognitive deficits in the Y-maze test. STZ-treated mice showed a significant increase in plasma corticosterone levels and a decrease in plasma and hippocampal levels of insulin-like growth factor-1 (IGF-1). Therefore, we examined the effects of corticosterone and IGF-1 on regulation of fractalkine and CX3CR1 expression. Dexamethasone (DEX) application significantly decreased the mRNA expression of fractalkine in primary neuron and astrocyte cultures, and of CX3CR1 in primary microglia cultures. On the other hand, IGF-1 application significantly increased the mRNA expression of fractalkine in primary neuron cultures and CX3CR1 in primary microglia cultures. In addition, administration of DEX and the IGF-1 receptor tyrosine kinase inhibitor picropodophyllin significantly reduced the mRNA expression of fractalkine and CX3CR1 in the hippocampus. These findings indicate that impaired cognition in STZ-treated mice is associated with reduced fractalkine-CX3CR1 signaling in the hippocampus which may be induced by an increase in corticosterone and a decrease in IGF-1.

9.
PLoS One ; 14(8): e0221205, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31430310

RESUMEN

Methamphetamine (METH), a commonly abused drug, elevates extracellular dopamine (DA) levels by inducing DA efflux through the DA transporter (DAT). Emerging evidence in rodent models suggests that locomotor responses to a novel inescapable open field may predict behavioral responses to abused drugs; METH produces more potent stimulant effects in high responders to novelty than in low responders. We herein found that mice deficient in protein tyrosine phosphatase receptor type Z (Ptprz-KO) exhibited an enhanced behavioral response to novelty; however, METH-induced hyperlocomotion was significantly lower in Ptprz-KO than in wild-type mice when METH was administered at a non-toxic dose of 1 mg per kg body weight (bdw). Single-cell RT-PCR revealed that the majority of midbrain DA neurons expressed PTPRZ. No histological alterations were observed in the mesolimbic or nigrostriatal dopaminergic pathways in Ptprz-KO brains; however, a significant decrease was noted in brain DA turnover, suggesting functional alterations. In vivo microdialysis experiments revealed that METH-evoked DA release in the nucleus accumbens was significantly lower in Ptprz-KO mice than in wild-type mice. Consistent with this result, Ptprz-KO mice showed significantly fewer cell surface DAT as well as weaker DA uptake activity in striatal synaptosomes prepared 1 hr after the administration of METH than wild-type mice, while no significant differences were observed in the two groups treated with saline. These results indicate that the high response phenotype of Ptprz-KO mice to novelty may not be simply attributed to hyper-dopaminergic activity, and that deficits in PTPRZ reduce the effects of METH by reducing DAT activity.


Asunto(s)
Conducta Animal/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Conducta Exploratoria , Metanfetamina/farmacología , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Animales , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Locomoción/efectos de los fármacos , Locomoción/genética , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo
10.
Sci Rep ; 7(1): 15501, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29138470

RESUMEN

Neutrophil gelatinase-associated lipocalin (NGAL, lipocalin 2 or LCN2) is an iron carrier protein whose circulating level is increased by kidney injury, bacterial infection and obesity, but its metabolic consequence remains elusive. To study physiological role of LCN2 in energy homeostasis, we challenged female Lcn2 knockout (KO) and wild-type (WT) mice with high fat diet (HFD) or cold exposure. Under normal diet, physical constitutions of Lcn2 KO and WT mice were indistinguishable. During HFD treatment, Lcn2 KO mice exhibited larger brown adipose tissues (BAT), consumed more oxygen, ate more food and gained less body weights as compared to WT mice. When exposed to 4 °C, KO mice showed higher body temperature and more intense 18F-fluorodeoxyglucose uptake in BAT, which were cancelled by ß3 adrenergic receptor blocker or iron-loaded (but not iron-free) LCN2 administration. These findings suggest that circulating LCN2 possesses obesity-promoting and anti-thermogenic effects through inhibition of BAT activity in an iron-dependent manner.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Lipocalina 2/genética , Obesidad/genética , ARN Mensajero/genética , Termogénesis/genética , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/patología , Antagonistas de Receptores Adrenérgicos beta 3/farmacología , Animales , Transporte Biológico , Frío , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos/genética , Metabolismo Energético/genética , Enterobactina/farmacología , Femenino , Fluorodesoxiglucosa F18/metabolismo , Regulación de la Expresión Génica , Lipocalina 2/sangre , Ratones , Ratones Noqueados , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Consumo de Oxígeno/genética , Propanolaminas/farmacología , ARN Mensajero/metabolismo , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo , Transducción de Señal
11.
Neuropeptides ; 65: 10-20, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28434791

RESUMEN

BACKGROUND: The preparation of human neurons derived from human induced pluripotent stem (iPS) cells can serve as a potential tool for evaluating the physiological and pathophysiological properties of human neurons and for drug development. METHODS: In the present study, the functional activity in neuronal cells differentiated from human iPS cells was observed. RESULTS: The differentiated cells expressed mRNAs for classical neuronal markers (microtubule-associated protein 2, ß-tubulin III, calbindin 1, synaptophysin and postsynaptic density protein 95) and for subunits of various excitatory and inhibitory transmitters (NR1, NR2A, NR2B, GABAA α1). Moreover, the differentiated cells expressed neuropeptides and receptors which are predominantly present in the hypothalamus. The expression of mRNA for preopiomelanocortin, agouti-related protein (AgRP), melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) increased in culture with a peak on Day 30 which subsequently decreased at Day 45. Immunoreactivities for MC3R and MC4R were also observed in cells differentiated from human iPS cells. Application of a potent agonist for MC3R and MC4R, [Nle4, D-Phe7]-α-melanocyte-stimulating hormone, significantly increased intracellular cAMP levels, but this was suppressed by AgRP (83-132) and SHU9119. CONCLUSIONS: These findings offer the possibility for drug developments using neurons differentiated from normal or disease-associated human iPS cells.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Melanocortinas/metabolismo , Neuronas/metabolismo , Adulto , Diferenciación Celular , Células Cultivadas , Femenino , Humanos , Subunidades de Proteína/metabolismo , ARN Mensajero/metabolismo , Receptores de GABA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
12.
Endocrinology ; 157(12): 4817-4828, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27726418

RESUMEN

We found a novel sexually dimorphic area (SDA) in the dorsal hypothalamus (DH) of mice. The SDA-DH was sandwiched between 2 known male-biased sexually dimorphic nuclei, the principal nucleus of the bed nucleus of the stria terminalis and the calbindin-sexually dimorphic nucleus, and exhibited a female-biased sex difference in neuronal cell density. The density of neurons in the SDA-DH was increased in male mice by orchidectomy on the day of birth and decreased in female mice by treatment with testosterone, dihydrotestosterone, or estradiol within 5 days after birth. These findings indicate that the SDA-DH is defeminized under the influence of testicular testosterone, which acts via both directly by binding to the androgen receptor, and indirectly by binding to the estrogen receptor after aromatization. We measured the activity of SDA-DH neurons with c-Fos, a neuronal activity marker, in female mice during maternal and sexual behaviors. The number of c-Fos-expressing neurons in the SDA-DH of female mice was negatively correlated with maternal behavior performance. However, the number of c-Fos-expressing neurons did not change during female sexual behavior. These findings suggest that the SDA-DH contains a neuronal cell population, the activity of which decreases in females exhibiting higher performance of maternal behavior, but it may contribute less to female sexual behavior. Additionally, we examined the brain of common marmosets and found an area that appears to be homologous with the mouse SDA-DH. The sexually dimorphic structure identified in this study is not specific to mice and may be found in other species.


Asunto(s)
Recuento de Células , Hipotálamo/citología , Neuronas/citología , Caracteres Sexuales , Andrógenos/farmacología , Animales , Callithrix , Dihidrotestosterona/farmacología , Femenino , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Orquiectomía , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores Androgénicos/metabolismo , Conducta Sexual Animal/efectos de los fármacos , Conducta Sexual Animal/fisiología , Testosterona/farmacología
13.
Zoolog Sci ; 33(5): 497-504, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27715422

RESUMEN

Ghrelin was first isolated from human and rat as an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). In the present study, we determined the ghrelin cDNA sequence of the common marmoset (Callithrix jacchus), a small-bodied New World monkey, and investigated the distribution of ghrelin-producing cells in the gastrointestinal tract and localization profiles with somatostatin-producing cells. The marmoset ghrelin cDNA coding region was 354 base pairs, and showed high homology to that in human, rhesus monkey, and mouse. Marmoset ghrelin consists of 28 amino acids, and the N-terminal region is highly conserved as found in other mammalian species. Marmoset preproghrelin and mature ghrelin have 86.3% and 92.9% homology, respectively, to their human counterparts. Quantitative RT-PCR analysis showed that marmoset ghrelin mRNA is highly expressed in the stomach, but it is not detected in other tissues of the gastrointestinal tract. In addition, a large number of ghrelin mRNA-expressing cells and ghrelin-immunopositive cells were detected in the mucosal layer of the stomach, but not in the myenteric plexus. Moreover, all the ghrelin cells examined in the stomach were observed to be closed-type. Double staining showed that somatostatin-immunopositive cells were not co-localized with ghrelin-producing cells; however, a subset of somatostatin-immunopositive cells is directly adjacent to ghrelin-immunopositive cells. These findings suggest that the distribution of ghrelin cells in marmoset differs from that in rodents, and thus the marmoset may be a more useful model for the translational study of ghrelin in primates. In conclusion, we have clarified the expression and cell distribution of ghrelin in marmoset, which may represent a useful model in translational study.


Asunto(s)
Callithrix/metabolismo , Clonación Molecular , Tracto Gastrointestinal/citología , Ghrelina/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Callithrix/genética , ADN/genética , ADN Complementario/química , ADN Complementario/genética , ADN Complementario/metabolismo , Tracto Gastrointestinal/metabolismo , Regulación de la Expresión Génica/fisiología , Ghrelina/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Especificidad de la Especie
14.
Anticancer Res ; 36(7): 3771-4, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27354653

RESUMEN

BACKGROUND/AIM: Gc protein-derived macrophage-activating factor (GcMAF) has various functions as an immune modulator, such as macrophage activation, anti-angiogenic activity and anti-tumor activity. Clinical trials of second-generation GcMAF demonstrated remarkable clinical effects in several types of cancers. Thus, GcMAF-based immunotherapy has a wide application for use in the treatment of many diseases via macrophage activation that can be used as a supportive therapy. Multiple sclerosis (MS) is considered to be an autoimmune disorder that affects the myelinated axons in the central nervous system (CNS). This study was undertaken to examine the effects of second-generation GcMAF in a patient with MS. RESULTS: This case study demonstrated that treatments of GcMAF in a patient with MS have potent therapeutic actions with early beneficial responses, especially improvement of motor dysfunction. CONCLUSION: GcMAF shows therapeutic potency in the treatment of MS.


Asunto(s)
Factores Inmunológicos/uso terapéutico , Factores Activadores de Macrófagos/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Proteína de Unión a Vitamina D/uso terapéutico , Anciano , Humanos , Factores Inmunológicos/farmacología , Inmunoterapia , Locomoción/efectos de los fármacos , Factores Activadores de Macrófagos/farmacología , Masculino , Esclerosis Múltiple/fisiopatología , Inducción de Remisión , Resultado del Tratamiento , Proteína de Unión a Vitamina D/farmacología
15.
Peptides ; 81: 38-50, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27020246

RESUMEN

C-type natriuretic peptide (CNP) and its receptor, natriuretic peptide receptor-B (NPR-B), are abundantly distributed in the hypothalamus. To explore the role of central CNP/NPR-B signaling in energy regulation, we generated mice with brain-specific NPR-B deletion (BND mice) by crossing Nestin-Cre transgenic mice and mice with a loxP-flanked NPR-B locus. Brain-specific NPR-B deletion prevented body weight gain induced by a high-fat diet (HFD), and the mesenteric fat and liver weights were significantly decreased in BND mice fed an HFD. The decreased liver weight in BND mice was attributed to decreased lipid accumulation in the liver, which was confirmed by histologic findings and lipid content. Gene expression analysis revealed a significant decrease in the mRNA expression levels of CD36, Fsp27, and Mogat1 in the liver of BND mice, and uncoupling protein 2 mRNA expression was significantly lower in the mesenteric fat of BND mice fed an HFD than in that of control mice. This difference was not observed in the epididymal or subcutaneous fat. Although previous studies reported that CNP/NPR-B signaling inhibits SNS activity in rodents, SNS is unlikely to be the underlying mechanism of the metabolic phenotype observed in BND mice. Taken together, CNP/NPR-B signaling in the brain could be a central factor that regulates visceral lipid accumulation and hepatic steatosis under HFD conditions. Further analyses of the precise mechanisms will enhance our understanding of the contribution of the CNP/NPR-B system to energy regulation.


Asunto(s)
Encéfalo/metabolismo , Hígado Graso/metabolismo , Grasa Intraabdominal/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Péptido Natriurético Tipo-C/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Antígenos CD36/genética , Antígenos CD36/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/genética , Hígado Graso/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Hipotálamo/metabolismo , Grasa Intraabdominal/química , Metabolismo de los Lípidos/genética , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/genética , Obesidad/metabolismo , Tamaño de los Órganos/genética , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores del Factor Natriurético Atrial/genética , Transducción de Señal , Aumento de Peso/genética
16.
Diabetes ; 62(5): 1500-4, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23274904

RESUMEN

C-type natriuretic peptide (CNP) and its receptor are abundantly distributed in the brain, especially in the arcuate nucleus (ARC) of the hypothalamus associated with regulating energy homeostasis. To elucidate the possible involvement of CNP in energy regulation, we examined the effects of intracerebroventricular administration of CNP on food intake in mice. The intracerebroventricular administration of CNP-22 and CNP-53 significantly suppressed food intake on 4-h refeeding after 48-h fasting. Next, intracerebroventricular administration of CNP-22 and CNP-53 significantly decreased nocturnal food intake. The increment of food intake induced by neuropeptide Y and ghrelin was markedly suppressed by intracerebroventricular administration of CNP-22 and CNP-53. When SHU9119, an antagonist for melanocortin-3 and melanocortin-4 receptors, was coadministered with CNP-53, the suppressive effect of CNP-53 on refeeding after 48-h fasting was significantly attenuated by SHU9119. Immunohistochemical analysis revealed that intracerebroventricular administration of CNP-53 markedly increased the number of c-Fos-positive cells in the ARC, paraventricular nucleus, dorsomedial hypothalamus, ventromedial hypothalamic nucleus, and lateral hypothalamus. In particular, c-Fos-positive cells in the ARC after intracerebroventricular administration of CNP-53 were coexpressed with α-melanocyte-stimulating hormone immunoreactivity. These results indicated that intracerebroventricular administration of CNP induces an anorexigenic action, in part, via activation of the melanocortin system.


Asunto(s)
Regulación del Apetito , Hipotálamo/metabolismo , Melanocortinas/agonistas , Péptido Natriurético Tipo-C/metabolismo , Neuronas/metabolismo , Receptores de Melanocortina/agonistas , Transducción de Señal , Animales , Regulación del Apetito/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Ghrelina/antagonistas & inhibidores , Ghrelina/metabolismo , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Inyecciones Intraventriculares , Masculino , Melanocortinas/antagonistas & inhibidores , Melanocortinas/metabolismo , Hormonas Estimuladoras de los Melanocitos/farmacología , Ratones , Ratones Endogámicos C57BL , Péptido Natriurético Tipo-C/administración & dosificación , Péptido Natriurético Tipo-C/antagonistas & inhibidores , Proteínas del Tejido Nervioso/administración & dosificación , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuropéptido Y/antagonistas & inhibidores , Neuropéptido Y/metabolismo , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/administración & dosificación , Precursores de Proteínas/antagonistas & inhibidores , Precursores de Proteínas/metabolismo , Receptores de Melanocortina/antagonistas & inhibidores , Receptores de Melanocortina/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , alfa-MSH/metabolismo
17.
Nihon Shinkei Seishin Yakurigaku Zasshi ; 32(5-6): 245-50, 2012 Nov.
Artículo en Japonés | MEDLINE | ID: mdl-23373310

RESUMEN

Obesity is the most critical factor in the pathology of metabolic syndrome (MetS), and is associated with an increased risk of depression. The imbalance of hormones and neural peptides which are involved in energy regulation are observed in obesity. It becomes evident that these hormones and neural peptides also affect mood. Leptin plays a pivotal role in energy regulation mainly acting in the hypothalamus of the brain. Although obese humans and rodents usually have high circulating levels of leptin, leptin neither reduces food intake nor increases energy expenditure. This paradoxical situation in obesity has been termed "leptin resistance", which is considered to be a central dogma for obesity. Based on these observations, we examined the functional significance of leptin in the regulation of the depressive state in diet-induced obese (DIO) mice. Our recent study demonstrated that DIO mice showed severe depressive behavior without response to the antidepressant effect of leptin, which is, in part, due to the impairment of leptin action in the hippocampus (Yamada, et al., Endocrinology, 2011). MetS and CNS dysfunction might have common pathological bases vulnerable to these disorders. Our future direction is to investigate a new treatment strategy of MetS by analyzing CNS dysfunction associated with obesity.


Asunto(s)
Enfermedades del Sistema Nervioso Central/metabolismo , Depresión/metabolismo , Leptina/metabolismo , Síndrome Metabólico/metabolismo , Obesidad/metabolismo , Animales , Enfermedades del Sistema Nervioso Central/etiología , Depresión/etiología , Modelos Animales de Enfermedad , Humanos , Síndrome Metabólico/complicaciones , Obesidad/complicaciones , Obesidad/fisiopatología
18.
Metabolism ; 61(2): 255-61, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21871641

RESUMEN

Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis can increase the risk of cardiovascular disease (CVD). However, the detailed relationships of HPA axis activity with weight reduction and CVD risk factors in obese patients have not been examined. This study was designed to elucidate the associations of salivary cortisol levels with weight reduction and CVD risk factors in obese patients. As a marker of HPA axis activity, we measured the morning salivary cortisol levels of 83 obese Japanese outpatients. We also examined metabolic parameters, inflammatory markers, and indicators of arterial stiffness, that is, the pulse wave velocity and cardio-ankle vascular index. All 83 obese patients underwent 3-month weight reduction therapy with lifestyle modification. At the baseline, multivariate regression analysis revealed that only logarithmic transformation of C-reactive protein (ß = 0.258, P < .05) and cardio-ankle vascular index (ß = 0.233, P < .05) were independent determinants of the salivary cortisol levels. However, other metabolic parameters were not significantly associated with the salivary cortisol levels. In addition, lower salivary cortisol levels and higher body weight at the baseline were the only independent determinants of successful weight loss through the weight reduction therapy (P < .01). The present study demonstrates that the baseline morning salivary cortisol levels are significantly associated with the levels of an inflammatory marker, arterial stiffness, and successful weight reduction in obese patients. Therefore, salivary cortisol could be a useful marker for assessing and managing body weight and CVD risk factors in obese patients.


Asunto(s)
Pueblo Asiatico , Hidrocortisona/metabolismo , Obesidad/terapia , Programas de Reducción de Peso , Adulto , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Femenino , Humanos , Hidrocortisona/análisis , Masculino , Persona de Mediana Edad , Obesidad/diagnóstico , Obesidad/etnología , Obesidad/metabolismo , Pronóstico , Conducta de Reducción del Riesgo , Saliva/química , Saliva/metabolismo , Resultado del Tratamiento , Programas de Reducción de Peso/métodos
20.
Endocrinology ; 152(7): 2634-43, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21521746

RESUMEN

Recent epidemiological studies indicate that obesity increases the incidence of depression. We examined the implication of leptin for obesity-associated depression. Leptin induced antidepressive behavior in normal mice in a forced swimming test (FST), and leptin-overexpressing transgenic mice with hyperleptinemia exhibited more antidepressive behavior in the FST than nontransgenic mice. In contrast, leptin-deficient ob/ob mice showed more severe depressive behavior in the FST than normal mice, and leptin administration substantially ameliorated this depressive behavior. Diet-induced obese (DIO) mice fed a high-fat diet showed more depressive behavior in the FST and in a sucrose preference test compared with mice fed a control diet (CD). In DIO mice, leptin induced neither antidepressive action nor increment of the number of c-Fos immunoreactive cells in the hippocampus. Diet substitution from high-fat diet to CD in DIO mice ameliorated the depressive behavior and restored leptin-induced antidepressive action. Brain-derived neurotrophic factor concentrations in the hippocampus were significantly lower in DIO mice than in CD mice. Leptin administration significantly increased hippocampal brain-derived neurotrophic factor concentrations in CD mice but not in DIO mice. The antidepressant activity of leptin in CD mice was significantly attenuated by treatment with K252a. These findings demonstrated that leptin induces an antidepressive state, and DIO mice, which exhibit severe depressive behavior, did not respond to leptin in both the FST and the biochemical changes in the hippocampus. Thus, depression associated with obesity is due, at least in part, to impaired leptin activity in the hippocampus.


Asunto(s)
Depresión/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Leptina/fisiología , Obesidad/psicología , Animales , Conducta Animal/efectos de los fármacos , Mapeo Encefálico , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Carbazoles/administración & dosificación , Carbazoles/farmacología , Depresión/patología , Depresión/prevención & control , Grasas de la Dieta/efectos adversos , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipotálamo/efectos de los fármacos , Hipotálamo/patología , Alcaloides Indólicos/administración & dosificación , Alcaloides Indólicos/farmacología , Inyecciones Intraventriculares , Leptina/administración & dosificación , Leptina/sangre , Leptina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Distribución Aleatoria , Receptor trkB/antagonistas & inhibidores , Proteínas Recombinantes/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...