Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 11(6)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37376417

RESUMEN

Neutrophils are the most abundant immune cells and make up about 70% of white blood cells in human blood and play a critical role as the first line of defense in the innate immune response. They also help regulate the inflammatory environment to promote tissue repair. However, in cancer, neutrophils can be manipulated by tumors to either promote or hinder tumor growth depending on the cytokine pool. Studies have shown that tumor-bearing mice have increased levels of neutrophils in peripheral circulation and that neutrophil-derived exosomes can deliver various cargos, including lncRNA and miRNA, which contribute to tumor growth and degradation of extracellular matrix. Exosomes derived from immune cells generally possess anti-tumor activities and induce tumor-cell apoptosis by delivering cytotoxic proteins, ROS generation, H2O2 or activation of Fas-mediated apoptosis in target cells. Engineered exosome-like nanovesicles have been developed to deliver chemotherapeutic drugs precisely to tumor cells. However, tumor-derived exosomes can aggravate cancer-associated thrombosis through the formation of neutrophil extracellular traps. Despite the advancements in neutrophil-related research, a detailed understanding of tumor-neutrophil crosstalk is still lacking and remains a major barrier in developing neutrophil-based or targeted therapy. This review will focus on the communication pathways between tumors and neutrophils, and the role of neutrophil-derived exosomes (NDEs) in tumor growth. Additionally, potential strategies to manipulate NDEs for therapeutic purposes will be discussed.

2.
Cell Death Dis ; 14(5): 299, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130837

RESUMEN

In response to stress, cells make a critical decision to arrest or undergo apoptosis, mediated in large part by the tumor suppressor p53. Yet the mechanisms of these cell fate decisions remain largely unknown, particularly in normal cells. Here, we define an incoherent feed-forward loop in non-transformed human squamous epithelial cells involving p53 and the zinc-finger transcription factor KLF5 that dictates responses to differing levels of cellular stress from UV irradiation or oxidative stress. In normal unstressed human squamous epithelial cells, KLF5 complexes with SIN3A and HDAC2 repress TP53, allowing cells to proliferate. With moderate stress, this complex is disrupted, and TP53 is induced; KLF5 then acts as a molecular switch for p53 function by transactivating AKT1 and AKT3, which direct cells toward survival. By contrast, severe stress results in KLF5 loss, such that AKT1 and AKT3 are not induced, and cells preferentially undergo apoptosis. Thus, in human squamous epithelial cells, KLF5 gates the response to UV or oxidative stress to determine the p53 output of growth arrest or apoptosis.


Asunto(s)
Células Epiteliales , Factores de Transcripción de Tipo Kruppel , Proteína p53 Supresora de Tumor , Humanos , Apoptosis/genética , Diferenciación Celular , Factores de Transcripción de Tipo Kruppel/genética , Estrés Oxidativo , Proteína p53 Supresora de Tumor/genética
3.
Adv Sci (Weinh) ; 10(16): e2207458, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37038094

RESUMEN

ß-TrCP is an E3 ubiquitin ligase that plays important roles in multiple human cancers including esophageal squamous cell carcinoma (ESCC). Analysis of ESCC patient samples reveal that only protein level but not transcript level of ß-TrCP associated with patient prognosis, suggesting regulators of ß-TrCP protein stability play an essential role in ESCC progression and may be novel targets to develop ESCC therapies. Although ß-TrCP stability is known to be mediated by the ubiquitin-proteasome system, it is unclear which enzymes play a major role to determine ß-TrCP stability in the context of ESCC. In this study, OTUD6B is identified as a potent deubiquitinase of ß-TrCP that suppress ESCC progression through the OTUD6B-ß-TrCP-SNAIL axis. Low OTUD6B expression is associated with a poor prognosis of ESCC patients. Importantly, all-trans retinoic acid (ATRA) is found to promote OTUD6B translation and thus suppress ESCC tumor growth and enhance the response of ESCC tumors to anti-PD-1 immunotherapies. These findings demonstrate that OTUD6B is a crucial deubiquitinase of ß-TrCP in ESCC and suggest combination of ATRA and anti-PD-1 immune checkpoint inhibitor may benefit a cohort of ESCC patients.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/terapia , Proteínas con Repetición de beta-Transducina/genética , Proteínas con Repetición de beta-Transducina/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/metabolismo , Línea Celular Tumoral , Tretinoina/farmacología , Tretinoina/metabolismo , Enzimas Desubicuitinizantes , Inmunoterapia
4.
Nat Genet ; 53(6): 881-894, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33972779

RESUMEN

Esophageal squamous cell carcinomas (ESCCs) harbor recurrent chromosome 3q amplifications that target the transcription factor SOX2. Beyond its role as an oncogene in ESCC, SOX2 acts in development of the squamous esophagus and maintenance of adult esophageal precursor cells. To compare Sox2 activity in normal and malignant tissue, we developed engineered murine esophageal organoids spanning normal esophagus to Sox2-induced squamous cell carcinoma and mapped Sox2 binding and the epigenetic and transcriptional landscape with evolution from normal to cancer. While oncogenic Sox2 largely maintains actions observed in normal tissue, Sox2 overexpression with p53 and p16 inactivation promotes chromatin remodeling and evolution of the Sox2 cistrome. With Klf5, oncogenic Sox2 acquires new binding sites and enhances activity of oncogenes such as Stat3. Moreover, oncogenic Sox2 activates endogenous retroviruses, inducing expression of double-stranded RNA and dependence on the RNA editing enzyme ADAR1. These data reveal SOX2 functions in ESCC, defining targetable vulnerabilities.


Asunto(s)
Adenosina Desaminasa/metabolismo , Epigenoma , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción SOXB1/metabolismo , Regiones no Traducidas 3'/genética , Animales , Secuencia de Bases , Carcinogénesis/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Retrovirus Endógenos/genética , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Humanos , Interferones/metabolismo , Intrones/genética , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Organoides/patología , Unión Proteica , ARN Bicatenario/metabolismo , Factores de Transcripción SOXB1/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Genes Dev ; 34(13-14): 973-988, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32467224

RESUMEN

Chromatin modifiers play critical roles in epidermal development, but the functions of histone deacetylases in this context are poorly understood. The class I HDAC, HDAC3, is of particular interest because it plays divergent roles in different tissues by partnering with tissue-specific transcription factors. We found that HDAC3 is expressed broadly in embryonic epidermis and is required for its orderly stepwise stratification. HDAC3 protein stability in vivo relies on NCoR and SMRT, which function redundantly in epidermal development. However, point mutations in the NCoR and SMRT deacetylase-activating domains, which are required for HDAC3's enzymatic function, permit normal stratification, indicating that HDAC3's roles in this context are largely independent of its histone deacetylase activity. HDAC3-bound sites are significantly enriched for predicted binding motifs for critical epidermal transcription factors including AP1, GRHL, and KLF family members. Our results suggest that among these, HDAC3 operates in conjunction with KLF4 to repress inappropriate expression of Tgm1, Krt16, and Aqp3 In parallel, HDAC3 suppresses expression of inflammatory cytokines through a Rela-dependent mechanism. These data identify HDAC3 as a hub coordinating multiple aspects of epidermal barrier acquisition.


Asunto(s)
Diferenciación Celular/genética , Células Epidérmicas/citología , Epidermis/embriología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Animales , Embrión de Mamíferos , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Genes Letales/genética , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Endogámicos C57BL , Mutación , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/metabolismo , Dominios y Motivos de Interacción de Proteínas/genética , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo
6.
Cell Death Differ ; 27(6): 1981-1997, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31831874

RESUMEN

Squamous cell carcinoma (SCC) is defined as a category of aggressive malignancies arising from the squamous epithelium of various organs. Resistance to chemotherapies is a common feature of SCCs, which leads to a poor prognosis among SCC patients. Recently, studies have illustrated the essential tumor suppressive role of ARID1A in several cancer types, but its role in SCCs remains unclear. Cancer stemness has been recognized as a main reason for tumorigenesis and is commonly correlated with chemoresistance, yet the relationship between ARID1A and cancer stemness remains unknown. In this study, we showed that Arid1a conditional knockout mice had a high incidence of SCCs occurring in the tongue and esophagus. ARID1A depletion promoted tumor initiation and cancer stemness in human SCC cells. Mechanistic studies revealed that ARID1A blocked the interaction between cyclin-dependent kinases (CDKs) and retinoblastoma protein (Rb), reducing the phosphorylation of Rb. Dephosphorylated Rb suppressed E2F1 activity and then suppressed cancer stemness by inactivating c-Myc. Furthermore, we showed that ARID1A depletion significantly increased the chemoresistance of SCC and that a CDK inhibitor exhibited a favorable effect on rescuing the chemoresistance caused by ARID1A loss. Collectively, our study showed that ARID1A inhibits the cancer stemness of SCCs by competing with CDKs to bind with Rb to inhibit the E2F1/c-Myc pathway.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Proteínas de Unión al ADN/fisiología , Factores de Transcripción/fisiología , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Factor de Transcripción E2F1/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Proteína de Retinoblastoma/metabolismo
7.
PLoS One ; 14(4): e0215746, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30998758

RESUMEN

Understanding the regulatory mechanisms within esophageal epithelia is essential to gain insight into the pathogenesis of esophageal diseases, which are among the leading causes of morbidity and mortality throughout the world. The zinc-finger transcription factor Krüppel-like factor (KLF4) is implicated in a large number of cellular processes, such as proliferation, differentiation, and inflammation in esophageal epithelia. In murine esophageal epithelia, Klf4 overexpression causes chronic inflammation which is mediated by activation of NFκB signaling downstream of KLF4, and this esophageal inflammation produces epithelial hyperplasia and subsequent esophageal squamous cell cancer. Yet, while NFκB activation clearly promotes esophageal inflammation, the mechanisms by which NFκB signaling is activated in esophageal diseases are not well understood. Here, we demonstrate that the Rho-related GTP-binding protein RHOF is activated by KLF4 in esophageal keratinocytes, leading to the induction of NFκB signaling. Moreover, RHOF is required for NFκB activation by KLF4 in esophageal keratinocytes and is also important for esophageal keratinocyte proliferation and migration. Finally, we find that RHOF is upregulated in eosinophilic esophagitis, an important esophageal inflammatory disease in humans. Thus, RHOF activation of NFκB in esophageal keratinocytes provides a potentially important and clinically-relevant mechanism for esophageal inflammation and inflammation-mediated esophageal squamous cell cancer.


Asunto(s)
Mucosa Esofágica/metabolismo , Esofagitis/metabolismo , Queratinocitos/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Animales , Mucosa Esofágica/patología , Esofagitis/genética , Esofagitis/patología , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Queratinocitos/patología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Transgénicos , FN-kappa B/genética , Proteínas de Unión al GTP rho/genética
8.
Nat Commun ; 8(1): 1758, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29170450

RESUMEN

Notch1 transactivates Notch3 to drive terminal differentiation in stratified squamous epithelia. Notch1 and other Notch receptor paralogs cooperate to act as a tumor suppressor in squamous cell carcinomas (SCCs). However, Notch1 can be stochastically activated to promote carcinogenesis in murine models of SCC. Activated form of Notch1 promotes xenograft tumor growth when expressed ectopically. Here, we demonstrate that Notch1 activation and epithelial-mesenchymal transition (EMT) are coupled to promote SCC tumor initiation in concert with transforming growth factor (TGF)-ß present in the tumor microenvironment. We find that TGFß activates the transcription factor ZEB1 to repress Notch3, thereby limiting terminal differentiation. Concurrently, TGFß drives Notch1-mediated EMT to generate tumor initiating cells characterized by high CD44 expression. Moreover, Notch1 is activated in a small subset of SCC cells at the invasive tumor front and predicts for poor prognosis of esophageal SCC, shedding light upon the tumor promoting oncogenic aspect of Notch1 in SCC.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Transición Epitelial-Mesenquimal , Carcinoma de Células Escamosas de Esófago/metabolismo , Receptor Notch1/metabolismo , Receptor Notch3/metabolismo , Animales , Carcinogénesis , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/fisiopatología , Línea Celular Tumoral , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/fisiopatología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Ratones , Ratones Desnudos , Ratones Transgénicos , Receptor Notch1/genética , Receptor Notch3/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
9.
Nat Commun ; 8: 15397, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28589954

RESUMEN

Human WNT10A mutations are associated with developmental tooth abnormalities and adolescent onset of a broad range of ectodermal defects. Here we show that ß-catenin pathway activity and adult epithelial progenitor proliferation are reduced in the absence of WNT10A, and identify Wnt-active self-renewing stem cells in affected tissues including hair follicles, sebaceous glands, taste buds, nails and sweat ducts. Human and mouse WNT10A mutant palmoplantar and tongue epithelia also display specific differentiation defects that are mimicked by loss of the transcription factor KLF4. We find that ß-catenin interacts directly with region-specific LEF/TCF factors, and with KLF4 in differentiating, but not proliferating, cells to promote expression of specialized keratins required for normal tissue structure and integrity. Our data identify WNT10A as a critical ligand controlling adult epithelial proliferation and region-specific differentiation, and suggest downstream ß-catenin pathway activation as a potential approach to ameliorate regenerative defects in WNT10A patients.


Asunto(s)
Diferenciación Celular , Displasia Ectodérmica/genética , Displasia Ectodérmica/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/genética , Células Madre/metabolismo , Proteínas Wnt/genética , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Proteína Axina/metabolismo , Secuencia de Bases , Linaje de la Célula , Proliferación Celular , Autorrenovación de las Células , Desarrollo Embrionario , Epidermis/crecimiento & desarrollo , Epidermis/patología , Epidermis/ultraestructura , Epitelio/embriología , Epitelio/metabolismo , Epitelio/ultraestructura , Femenino , Folículo Piloso/metabolismo , Folículo Piloso/patología , Humanos , Factor 4 Similar a Kruppel , Mutación con Pérdida de Función/genética , Masculino , Ratones , Diente Molar/embriología , Diente Molar/metabolismo , Especificidad de Órganos , Linaje , Unión Proteica , Vía de Señalización Wnt , beta Catenina/metabolismo
10.
Sci Rep ; 6: 26130, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27184424

RESUMEN

Epithelial differentiation and stratification are essential for normal homeostasis, and disruption of these processes leads to both injury and cancer. The zinc-finger transciption factor KLF4 is a key driver of epithelial differentiation, yet the mechanisms and targets by which KLF4 controls differentiation are not well understood. Here, we define WNT5A, a non-canonical Wnt ligand implicated in epithelial differentiation, repair, and cancer, as a direct transcriptional target that is activated by KLF4 in squamous epithelial cells. Further, we demonstrate functionally that WNT5A mediates KLF4 control of epithelial differentiation and stratification, as treatment of keratinocytes with WNT5A rescues defective epithelial stratification resulting from KLF4 loss. Finally, we show that the small GTPase CDC42 is regulated by KLF4 in a WNT5A dependent manner. As such, we delineate a novel pathway for epithelial differentiation and stratification and define potential therapeutic targets for epithelial diseases.


Asunto(s)
Diferenciación Celular , Células Epiteliales/fisiología , Regulación de la Expresión Génica , Animales , Células Cultivadas , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Ratones , Proteína Wnt-5a , Proteína de Unión al GTP cdc42/metabolismo
11.
Cancer Biol Ther ; 17(4): 422-9, 2016 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-26934576

RESUMEN

The transcriptional regulator Krüppel-like factor 4 (KLF4) is decreased in human esophageal squamous cell cancer (ESCC), and Klf4 deletion in mice produces squamous cell dysplasia. Nonetheless the mechanisms of KLF4 downregulation in ESCC and the functions of KLF4 during ESCC development and progression are not well understood. Here, we sought to define the regulation of KLF4 and delineate the stage-specific effects of KLF4 in ESCC. We found that KLF4 expression was decreased in human ESCC and in 8 of 9 human ESCC cell lines. However, by genomic sequencing, we observed no KLF4 mutations or copy number changes in any of 52 human ESCC, suggesting other mechanisms for KLF4 silencing. In fact, KLF4 expression in human ESCC cell lines was increased by the DNA methylation inhibitor 5-azacytidine, suggesting an epigenetic mechanism for KLF4 silencing. Surprisingly, while KLF4 decreased in high-grade dysplasia and early stage tumors, KLF4 increased with advanced cancer stage, and KLF4 expression in ESCC was inversely correlated with survival. Interestingly, KLF4 promoted invasion of human ESCC cells, providing a functional link to the stage-specific expression of KLF4. Taken together, these findings suggest that KLF4 loss is necessary for esophageal tumorigenesis but that restored KLF4 expression in ESCC promotes tumor spread. Thus, the use of KLF4 as a diagnostic and therapeutic target in cancer requires careful consideration of context.


Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Estadificación de Neoplasias/métodos , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/patología , Regulación hacia Abajo , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago , Humanos , Factor 4 Similar a Kruppel , Polimorfismo de Nucleótido Simple , Análisis de Supervivencia
12.
Cancer Cell ; 29(3): 247-248, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26977875

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) has a dismal prognosis and is minimally responsive to current chemotherapies. In this issue of Cancer Cell, Xie et al. (2016) identify the transcription factor KLF4 as essential for the early stages of pancreatic carcinogenesis, expanding the repertoire of targets for early intervention strategies.


Asunto(s)
Células Acinares/patología , Carcinogénesis/genética , Carcinogénesis/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Páncreas/patología , Conductos Pancreáticos/patología , Lesiones Precancerosas/genética , Animales , Humanos , Factor 4 Similar a Kruppel
13.
Gastroenterology ; 150(7): 1609-1619.e11, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26896735

RESUMEN

BACKGROUND & AIMS: IκB kinase-ß (IKKß) mediates activation of the nuclear factor-κB, which regulates immune and inflammatory responses. Although nuclear factor-κB is activated in cells from patients with inflammatory diseases or cancer, little is known about its roles in the development and progression of esophageal diseases. We investigated whether mice that express an activated form of IKKß in the esophageal epithelia develop esophageal disorders. METHODS: We generated ED-L2-Cre/Rosa26-IKK2caSFL mice, in which the ED-L2 promoter activates expression of Cre in the esophageal epithelia, leading to expression of a constitutively active form of IKKß (IKKßca) in epithelial cells but not in inflammatory cells or the surrounding stroma (IKKßca mice). Mice lacking the Cre transgene served as controls. Some mice were given intraperitoneal injections of neutralizing antibodies against granulocyte-macrophage colony-stimulating factor (GM-CSF) or tumor necrosis factor (TNF), or immunoglobulin G1 (control), starting at 1 month of age. Epithelial tissues were collected and analyzed by immunofluorescence, immunohistochemical, and quantitative real-time polymerase chain reaction assays. Transgenes were overexpressed from retroviral vectors in primary human keratinocytes. RESULTS: IKKßca mice developed esophagitis and had increased numbers of blood vessels in the esophageal stroma, compared with controls. Esophageal tissues from IKKßca mice had increased levels of GM-CSF. Expression of IKKßca in primary human esophageal keratinocytes led to 11-fold overexpression of GM-CSF and 200-fold overexpression of TNF. Incubation of human umbilical vein endothelial cells with conditioned media from these keratinocytes increased endothelial cell migration by 42% and promoted formation of capillary tubes; these effects were blocked by a neutralizing antibody against GM-CSF. Injections of anti-GM-CSF reduced angiogenesis and numbers of CD31+ blood vessels in esophageal tissues of IKKßca mice, but did not alter the esophageal vasculature of control mice and did not alter recruitment of intraepithelial leukocytes to esophageal tissues of IKKßca mice. Injections of anti-TNF prevented the development of esophagitis in IKKßca mice. CONCLUSIONS: Constitutive activation of IKKß in the esophageal epithelia of mice leads to inflammation and angiogenesis, mediated by TNF and GM-CSF, respectively.


Asunto(s)
Esofagitis/metabolismo , Esófago/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Quinasa I-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Inductores de la Angiogénesis , Animales , Esófago/irrigación sanguínea , Ratones , Regulación hacia Arriba
14.
Nat Rev Cancer ; 13(10): 701-13, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24060862

RESUMEN

Krüppel-like factors (KLFs) are a family of DNA-binding transcriptional regulators with diverse and essential functions in a multitude of cellular processes, including proliferation, differentiation, migration, inflammation and pluripotency. In this Review, we discuss the roles and regulation of the 17 known KLFs in various cancer-relevant processes. Importantly, the functions of KLFs are context dependent, with some KLFs having different roles in normal cells and cancer, during cancer development and progression and in different cancer types. We also identify key questions for the field that are likely to lead to important new translational research and discoveries in cancer biology.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Factores de Transcripción de Tipo Kruppel/fisiología , Proteínas de Neoplasias/fisiología , Neoplasias/metabolismo , Transcripción Genética/genética , Animales , Apoptosis , Ciclo Celular , Diferenciación Celular , División Celular , Movimiento Celular , Genes Supresores de Tumor , Humanos , Inflamación/metabolismo , Factores de Transcripción de Tipo Kruppel/química , Factores de Transcripción de Tipo Kruppel/clasificación , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Metástasis de la Neoplasia , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Neoplasias/genética , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Oncogenes , Relación Estructura-Actividad , Microambiente Tumoral , Dedos de Zinc
15.
Neoplasia ; 15(5): 472-80, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23633919

RESUMEN

Esophageal cancer is the eighth most common cancer in the world and has an extremely dismal prognosis, with a 5-year survival of less than 20%. Current treatment options are limited, and thus identifying new molecular targets and pathways is critical to derive novel therapies. Worldwide, more than 90% of esophageal cancers are esophageal squamous cell cancer (ESCC). Previously, we identified that Krüppel-like factor 5 (KLF5), a key transcriptional regulator normally expressed in esophageal squamous epithelial cells, is lost in human ESCC. To examine the effects of restoring KLF5 in ESCC, we transduced the human ESCC cell lines TE7 and TE15, both of which lack KLF5 expression, with retrovirus to express KLF5 upon doxycycline induction. When KLF5 was induced, ESCC cells demonstrated increased apoptosis and decreased viability, with up-regulation of the proapoptotic factor BAX. Interestingly, c-Jun N-terminal kinase (JNK) signaling, an important upstream mediator of proapoptotic pathways including BAX, was also activated following KLF5 induction. KLF5 activation of JNK signaling was mediated by KLF5 transactivation of two key upstream regulators of the JNK pathway, ASK1 and MKK4, and inhibition of JNK blocked apoptosis and normalized cell survival following KLF5 induction. Thus, restoring KLF5 in ESCC cells promotes apoptosis and decreases cell survival in a JNK-dependent manner, providing a potential therapeutic target for human ESCC.


Asunto(s)
Apoptosis , Supervivencia Celular , Factores de Transcripción de Tipo Kruppel/metabolismo , Sistema de Señalización de MAP Quinasas , Línea Celular Tumoral , Inducción Enzimática , Neoplasias Esofágicas , Regulación Neoplásica de la Expresión Génica , Humanos , Factores de Transcripción de Tipo Kruppel/genética , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , Neoplasias de Células Escamosas , Activación Transcripcional , Regulación hacia Arriba , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
16.
Cell Cycle ; 11(21): 4033-9, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22990386

RESUMEN

Krüppel-like factor 5 (KLF5) is a key transcriptional regulator that is typically pro-proliferative in non-transformed epithelial cells but inhibits proliferation in transformed epithelial cells. However, the underlying mechanisms for this context-dependent function are not known. KLF5 is epigenetically silenced and exhibits a tumor suppressive function in esophageal squamous cell cancer (ESCC). Since p53 mutation is the most common genetic alteration in ESCC, as in other human epithelial cancers, we hypothesized that the context-dependent functions of KLF5 in cell proliferation were dependent on p53 status. In fact, in non-transformed human primary esophageal keratinocytes, when p53 was wild-type, KLF5 was pro-proliferative; however, KLF5 became anti-proliferative when p53 was mutated. KLF5 loss in human primary keratinocytes harboring p53 mutation accelerated the cell cycle and decreased expression of p21Waf1/Cip1; similar effects were also seen in ESCC cells with established p53 mutations. Further, p21Waf1/Cip1 was directly and differentially bound and regulated by KLF5 in the presence or absence of mutant p53, and suppression of p21Waf1/Cip1 reversed the antiproliferative effects of KLF5 in the presence of p53 mutation. Thus, KLF5 is a critical brake on an aberrant cell cycle, with important tumor suppressive functions in esophageal squamous cell and potentially other epithelial cancers.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proliferación Celular , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Queratinocitos/metabolismo , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Factores de Transcripción de Tipo Kruppel/genética , Mutación , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/genética
17.
PLoS One ; 7(5): e38338, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22675454

RESUMEN

Inflammatory bowel disease (IBD), which is characterized by chronic or recurring inflammation of the gastrointestinal tract, affects 1.4 million persons in the United States alone. KLF5, a Krüppel-like factor (KLF) family member, is expressed within the epithelia of the gastrointestinal tract and has been implicated in rapid cell proliferation, migration, and remodeling in a number of tissues. Given these functions, we hypothesized that constitutive Klf5 expression would protect against the development of colitis in vivo. To examine the role of KLF5 in vivo, we used the Villin promoter to target Klf5 to the entire horizontal axis of the small intestine and colon. Villin-Klf5 transgenic mice were born at normal Mendelian ratios and appeared grossly normal to at least 1 year of age. Surprisingly, there were no significant changes in cell proliferation or in the differentiation of any of the intestinal lineages within the duodenum, jejunum, ileum, and colon of Villin-Klf5 mice, compared to littermate controls. However, when Villin-Klf5 mice were treated with dextran sodium sulfate (DSS) to induce colitis, they developed less colonic injury and significantly reduced disease activity scores than littermate controls. The mechanism for this decreased injury may come via JAK-STAT signaling, the activation of which was increased in colonic mucosa of DSS treated Villin-Klf5 mice compared to controls. Thus, KLF5 and its downstream mediators may provide therapeutic targets and disease markers for IBD or other diseases characterized by injury and disruption of intestinal epithelia.


Asunto(s)
Colitis/genética , Colitis/metabolismo , Quinasas Janus/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Animales , Colitis/inducido químicamente , Expresión Génica , Predisposición Genética a la Enfermedad , Interleucinas/metabolismo , Mucosa Intestinal/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Fosforilación , Cicatrización de Heridas/genética , Interleucina-22
19.
Cancer Res ; 71(20): 6475-84, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21868761

RESUMEN

Squamous cell cancers account for more than half of all human cancers, and esophageal cancer is the sixth leading cause of cancer death worldwide. The majority of esophageal squamous cell carcinomas have identifiable p53 mutations, yet the same p53 mutations are found at comparable frequencies in precancerous dysplasia, indicating that transformation requires additional somatic changes yet to be defined. Here, we show that the zinc finger transcription factor Krüppel-like factor 5 (KLF5) transactivates NOTCH1 in the context of p53 mutation or loss. KLF5 loss limited NOTCH1 activity and was sufficient on its own to transform primary human keratinocytes harboring mutant p53, leading to the formation of invasive tumors. Restoration of NOTCH1 blocked transformation of KLF5-deficient and p53-mutant keratinocytes. Although human dysplastic epithelia accumulated KLF5, KLF5 expression was lost concurrently with NOTCH1 in squamous cell cancers. Taken together, these results define KLF5 loss as a critical event in squamous cell transformation and invasion. Our findings suggest that KLF5 may be a useful diagnostic and therapeutic target in esophageal squamous carcinomas and possibly more generally in other cancers associated with p53 loss of function.


Asunto(s)
Neoplasias Esofágicas/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Neoplasias de Células Escamosas/patología , Receptor Notch1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Línea Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Células Cultivadas , Progresión de la Enfermedad , Neoplasias Esofágicas/metabolismo , Esófago/metabolismo , Fibroblastos/metabolismo , Humanos , Queratinocitos/metabolismo , Ratones , Ratones SCID , Mutación , Invasividad Neoplásica , Neoplasias de Células Escamosas/metabolismo , Proteína p53 Supresora de Tumor/genética
20.
Cancer Cell ; 19(4): 470-83, 2011 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-21481789

RESUMEN

p120-catenin (p120ctn) interacts with E-cadherin, but to our knowledge, no formal proof that p120ctn functions as a bona fide tumor suppressor gene has emerged to date. We report herein that p120ctn loss leads to tumor development in mice. We have generated a conditional knockout model of p120ctn whereby mice develop preneoplastic and neoplastic lesions in the oral cavity, esophagus, and squamous forestomach. Tumor-derived cells secrete granulocyte macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor-α (TNFα). The tumors contain significant desmoplasia and immune cell infiltration. Immature myeloid cells comprise a significant percentage of the immune cells present and likely participate in fostering a favorable tumor microenvironment, including the activation of fibroblasts.


Asunto(s)
Carcinoma de Células Escamosas/etiología , Cateninas/genética , Neoplasias Esofágicas/etiología , Genes Supresores de Tumor , Inflamación/etiología , Neoplasias de la Boca/etiología , Animales , Cadherinas/análisis , Cateninas/análisis , Cateninas/deficiencia , Cateninas/fisiología , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Fibroblastos/fisiología , Humanos , Ratones , Células Mieloides/fisiología , FN-kappa B/fisiología , Catenina delta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA