RESUMEN
BACKGROUND: Toll-like receptor 9 (TLR9) agonists induce inflammatory responses that promote the killing of infectious micro-organisms, cancer cells and develop adaptive immune responses. Their ability as immunomodulators to enhance the activity of checkpoint inhibitors (CPI) in treating liver tumors is limited in part by the distinctive biology of intrahepatic myeloid-derived suppressor cells (MDSC) and challenges with tumor-specific therapeutic delivery. We have shown that the regional delivery of type C TLR9 agonist via pressure-enabled drug delivery (PEDD) system improves delivery to the tumor, enhances depletion of MDSCs and overall, stimulates the immune system in combination with or without CPI. Currently, CPIs are delivered intravenously, although there is a growing interest in its subcutaneous (SQ) administration. We compared nelitolimod formerly known as SD-101 administered using PEDD in combination with systemic (Sys) or SQ CPI in murine liver metastases (LM). METHODS: The LM model was developed by injecting MC38-Luc cells via the spleen of 8-12 week old male C57/BL6 mice followed by splenectomy. After a week, fluorescently labeled nelitolimod (10 µg/mouse) was delivered via PEDD and co-administered anti-programmed cell death-1 (α-PD-1) either via Sys or SQ. Tumor burden was monitored by in vivo imaging system. Serum cytokine levels were analyzed by Luminex. Tissues were harvested on Day 3 (D3) or Day 10 (D10) post-PEDD to enrich CD45+ cells and were analyzed via NanoString targeted transcriptomics (D3) or flow cytometry (FC, D10) to interrogate immune cell populations (D10). For NanoString analysis, the innate immune panels were selected, and for FC, MDSCs (CD11b+Gr1+), B cells (B220+), dendritic cells (DC, CD11c+), T (CD3+) cells, and M1-like macrophages (F4/80+CD38+Egr2-) were quantified. RESULTS: Nelitolimod delivered via PEDD resulted in changes in innate and adaptive immune cells within LM, including depletion of liver MDSC and increased M1-like macrophages in the liver, which are supportive of antitumor immunity. While CPI monotherapy failed to control tumor progression, nelitolimod and CPI combination improved LM control, survival and antitumor immunity beyond the nelitolimod monotherapy effect, irrespective of CPI delivery route. CONCLUSION: The SQ route of CPI delivery was equivalent to Sys in combination with nelitolimod, suggesting SQ-CPI may be a rational choice in combination with PEDD of nelitolimod for liver tumor treatment.
Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias Hepáticas , Células Supresoras de Origen Mieloide , Animales , Ratones , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/secundario , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Humanos , Sistemas de Liberación de Medicamentos , Ratones Endogámicos C57BL , Línea Celular TumoralRESUMEN
PURPOSE: To test the hypothesis that Pressure-Enabled Drug Delivery (PEDD) would improve the delivery of surrogate therapeutic glass microspheres (GMs) via hepatic artery infusion to liver tumors when compared with a conventional endhole microcatheter. MATERIALS AND METHODS: The study was conducted in transgenic pigs (Oncopigs) with induced liver tumors. Tumors were infused intra-arterially with fluorescently labeled GM. PEDD with a specialized infusion device (TriNav; TriSalus Life Sciences, Westminster, Colorado) was compared with conventional endhole microcatheter delivery in both lobar and selective infusions. Near-infrared imaging was used to detect GM fluorescent signal in tumors. Image analysis with a custom deep learning algorithm (Visiopharm A/S) was used to quantitate signal intensity in relation to the tumor border. RESULTS: With lobar infusions, significant increases in GM signal intensity were observed in and around tumors after PEDD (n = 10) when compared with those after conventional delivery (n = 7), with PEDD increasing penetration into the tumor by 117% (P = .004). In selective infusions, PEDD (n = 9) increased penetration into the tumor by 39% relative to conventional delivery (n = 8, P = .032). Lobar PEDD of GMs to the tumor was statistically equivalent to conventional selective delivery (P = .497). CONCLUSIONS: PEDD with a TriNav device significantly improved GM uptake in liver tumors relative to conventional infusion in both lobar and selective procedures. Lobar GM delivery with PEDD was equivalent to conventional selective delivery with an endhole device, suggesting that proximal PEDD infusions may enable effective delivery without selection of distal target vessels.
Asunto(s)
Vidrio , Arteria Hepática , Infusiones Intraarteriales , Microesferas , Animales , Arteria Hepática/diagnóstico por imagen , Presión Arterial/efectos de los fármacos , Diseño de Equipo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/diagnóstico por imagen , Neoplasias Hepáticas Experimentales/patología , Neoplasias Hepáticas Experimentales/metabolismo , Porcinos , Sus scrofa , Antineoplásicos/administración & dosificación , Dispositivos de Acceso Vascular , Sistemas de Liberación de Medicamentos/instrumentaciónRESUMEN
OBJECTIVES: Pressure-Enabled Drug Delivery (PEDD), a method using pressure to advance catheter-delivered drug distribution, can improve treatment for hepatocellular carcinoma (HCC) and liver metastases, but real-world evidence is limited. We compared baseline patient characteristics, clinical complexity, and post-procedure healthcare resource utilization (HRUs) and clinical complications for PEDD and non-PEDD procedures. METHODS: This study used a retrospective, longitudinal, cohort design of claims data from Clarivate's Real World Data Repository, which includes 98% of US payers with over 300 million unique patients from all US states. We identified patients with a trans-arterial chemoembolization (TACE) or trans-arterial radioembolization (TARE) from 1 January 2019 to 31 December 2022. Subsamples grouped patients with HCC receiving a TARE procedure at their first embolization and patients with metastatic colorectal cancer (CRC) that received a TARE procedure. We reported descriptive comparisons of our full sample of patients with HCC and liver metastases receiving PEDD versus non-PEDD procedures. We then conducted a matching-adjusted comparison of HRUs and clinical complications for PEDD and non-PEDD patients among our subsamples (HCC receiving a TARE procedure at their first embolization and patients with metastatic CRC that received a TARE procedure). Matching was based on baseline demographic and clinical characteristics using coarsened exact matching and propensity-score matching. HRUs included inpatient, outpatient, and emergency department visits. Clinical complications included ascites, cholecystitis, fatigue, gastric ulcer, gastritis, jaundice, LFT increase, lymphopenia, portal hypertension, and post-embolization syndrome. RESULTS: PEDD procedures were used on patients with worse baseline disease burdens: baseline Charlson comorbidity index (mean of 6.5 vs. 5.8), any prior clinical complication related to underlying disease (33.7 vs. 31.0%), and prior systemic therapy (22.1% vs. 16.2%). PEDD patients had a greater number of procedural codes indicative of technical complexity for TACE (PEDD mean = 226.3; non-PEDD mean = 134.5; p value <.01) and TARE (PEDD mean = 205.56; non-PEDD mean = 94.8; p value <0.01). Matching-adjusted analyses of patients with HCC and CRC demonstrated comparable HRU and clinical complications for PEDD and non-PEDD procedures post-index. CONCLUSION: Despite higher baseline disease burden and complexity, post-procedure HRU and clinical complications for PEDD patients were similar to non-PEDD patients. The complex baseline clinical profile may reflect selection of challenging cases for PEDD use. Future studies should validate the benefits observed with PEDD embolization in larger samples with greater statistical power.
Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Estudios Retrospectivos , Resultado del Tratamiento , Radioisótopos de Itrio/uso terapéutico , Quimioembolización Terapéutica/efectos adversosRESUMEN
BACKGROUND: Systemic immunotherapy has had limited clinical benefit in pancreatic ductal adenocarcinoma. This is thought to be due to its desmoplastic immunosuppressive tumor microenvironment in addition to high intratumoral pressures that limit drug delivery. Recent preclinical cancer models and early-phase clinical trials have demonstrated the potential of toll-like receptor 9 agonists, including the synthetic CpG oligonucleotide SD-101, to stimulate a wide range of immune cells and eliminate suppressive myeloid cells. We hypothesized that Pressure-Enabled Drug Delivery via Pancreatic Retrograde Venous Infusion of toll-like receptor 9 agonist would improve responsiveness to systemic anti-programmed death receptor-1 checkpoint inhibitor therapy in a murine orthotopic pancreatic ductal adenocarcinoma model. METHODS: Murine pancreatic ductal adenocarcinoma (KPC4580P) tumors were implanted into the pancreatic tails of C57BL/6J mice and treated 8 days after implantation. Mice were assigned to one of the following treatment groups: Pancreatic Retrograde Venous Infusion delivery of saline, Pancreatic Retrograde Venous Infusion delivery of toll-like receptor 9 agonist, systemic anti-programmed death receptor-1, systemic toll-like receptor 9 agonist, or the combination of Pancreatic Retrograde Venous Infusion delivery of toll-like receptor 9 agonist and systemic anti-programmed death receptor-1 (Combo). Fluorescently labeled toll-like receptor 9 agonist (radiant efficiency) was used to measure uptake of the drug on day 1. Changes in tumor burden were evaluated by necropsy at 2 different time points, 7 and 10 days after toll-like receptor 9 agonist treatment. Blood and tumors were collected at necropsy 10 days after toll-like receptor 9 agonist treatment for flow cytometric analysis of tumor-infiltrating leukocytes and plasma cytokines. RESULTS: All mice analyzed survived to necropsy. Site of tumor fluorescence measurements revealed 3-fold higher intensity fluorescence in Pancreatic Retrograde Venous Infusion delivery of toll-like receptor 9 agonist compared to systemic toll-like receptor 9 agonist mice. Tumor weights were significantly lower in the Combo group compared to Pancreatic Retrograde Venous Infusion delivery of saline. Flow cytometry of the Combo group demonstrated significantly increased overall T-cell number, specifically CD4+ T-cells, and a trend toward increased CD8+ T-cells. Cytokine analysis showed significantly decreased IL-6 and CXCL1. CONCLUSION: Pressure-Enabled Drug Delivery of toll-like receptor 9 agonist by Pancreatic Retrograde Venous Infusion with systemic anti-programmed death receptor-1 demonstrated improved pancreatic ductal adenocarcinoma tumor control in a murine pancreatic ductal adenocarcinoma model. These results support study of this combination therapy in pancreatic ductal adenocarcinoma patients and expansion of ongoing Pressure-Enabled Drug Delivery clinical trials.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Receptor Toll-Like 9/uso terapéutico , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Adyuvantes Inmunológicos/uso terapéutico , Citocinas , Receptores de Muerte Celular , Microambiente Tumoral , Neoplasias PancreáticasRESUMEN
OBJECTIVE: Programmed cell death protein 1 (PD-1) checkpoint inhibition and adoptive cellular therapy have had limited success in patients with microsatellite stable colorectal cancer liver metastases (CRLM). We sought to evaluate the effect of interleukin 10 (IL-10) blockade on endogenous T cell and chimeric antigen receptor T (CAR-T) cell antitumour function in CRLM slice cultures. DESIGN: We created organotypic slice cultures from human CRLM (n=38 patients' tumours) and tested the antitumour effects of a neutralising antibody against IL-10 (αIL-10) both alone as treatment and in combination with exogenously administered carcinoembryonic antigen (CEA)-specific CAR-T cells. We evaluated slice cultures with single and multiplex immunohistochemistry, in situ hybridisation, single-cell RNA sequencing, reverse-phase protein arrays and time-lapse fluorescent microscopy. RESULTS: αIL-10 generated a 1.8-fold increase in T cell-mediated carcinoma cell death in human CRLM slice cultures. αIL-10 significantly increased proportions of CD8+ T cells without exhaustion transcription changes, and increased human leukocyte antigen - DR isotype (HLA-DR) expression of macrophages. The antitumour effects of αIL-10 were reversed by major histocompatibility complex class I or II (MHC-I or MHC-II) blockade, confirming the essential role of antigen presenting cells. Interrupting IL-10 signalling also rescued murine CAR-T cell proliferation and cytotoxicity from myeloid cell-mediated immunosuppression. In human CRLM slices, αIL-10 increased CEA-specific CAR-T cell activation and CAR-T cell-mediated cytotoxicity, with nearly 70% carcinoma cell apoptosis across multiple human tumours. Pretreatment with an IL-10 receptor blocking antibody also potentiated CAR-T function. CONCLUSION: Neutralising the effects of IL-10 in human CRLM has therapeutic potential as a stand-alone treatment and to augment the function of adoptively transferred CAR-T cells.
Asunto(s)
Carcinoma , Neoplasias Colorrectales , Interleucina-10 , Neoplasias Hepáticas , Receptores Quiméricos de Antígenos , Receptores de Interleucina-10 , Animales , Humanos , Ratones , Antígeno Carcinoembrionario/inmunología , Carcinoma/inmunología , Carcinoma/secundario , Linfocitos T CD8-positivos/inmunología , Neoplasias Colorrectales/patología , Inmunoterapia Adoptiva , Interleucina-10/antagonistas & inhibidores , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/secundario , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Receptores de Interleucina-10/antagonistas & inhibidores , Anticuerpos Bloqueadores/inmunologíaRESUMEN
Myeloid-derived suppressor cells (MDSCs) expand in response to malignancy and suppress responsiveness to immunotherapy, including checkpoint inhibitors (CPIs). Within the liver, MDSCs have unique immunosuppressive features. While TLR9 agonists have shown promising activities in enhancing CPI responsiveness in superficial tumors amenable to direct needle injection, clinical success for liver tumors with TLR9 agonists has been limited by delivery challenges. Here, we report that regional intravascular infusion of ODN2395 into mice with liver metastasis (LM) partially eliminated liver MDSCs and reprogrammed residual MDSC. TLR9 agonist regional infusion also induced an increase in the M1/M2 macrophage ratio. Enhanced TLR9 signaling was demonstrated by an increased activation of in NFκB (pP65) and production of IL6 compared with systemic infusion. Further, PBMC-derived human MDSCs express TLR9, and treatment with class C TLR9 agonists (ODN2395 and SD101) reduced the expansion of MDSC population. TLR9 stimulation induced MDSC apoptosis and increased the M1/M2 macrophage ratio. Regional TLR9 agonist infusion along with systemic anti-PD-1 therapy improved control of LM. With effective delivery, TLR9 agonists have the potential to favorably reprogram the liver TME through reduction of MDSCs and favorable macrophage polarization, which may improve responsiveness to systemic CPI therapy.
Asunto(s)
Neoplasias Hepáticas , Células Supresoras de Origen Mieloide , Receptor Toll-Like 9 , Animales , Humanos , Ratones , Línea Celular Tumoral , Leucocitos Mononucleares , Neoplasias Hepáticas/tratamiento farmacológico , Receptor Toll-Like 9/agonistas , Microambiente TumoralRESUMEN
With the advent of cancer immunotherapy, there has been a major improvement in patient's quality of life and survival. The growth of cancer immunotherapy has dramatically changed our understanding of the basics of cancer biology and has altered the standards of care (surgery, radiotherapy, and chemotherapy) for patients. Cancer immunotherapy has generated significant excitement with the success of chimeric antigen receptor (CAR) T cell therapy in particular. Clinical results using CAR-T for hematological malignancies have led to the approval of four CD19-targeted and one B-cell maturation antigen (BCMA)-targeted cell therapy products by the US Food and Drug Administration (FDA). Also, immune checkpoint inhibitors such as antibodies against Programmed Cell Death-1 (PD-1), Programmed Cell Death Ligand-1 (PD-L1), and Cytotoxic T-Lymphocyte-Associated Antigen 4 (CTLA-4) have shown promising therapeutic outcomes and long-lasting clinical effect in several tumor types and patients who are refractory to other treatments. Despite these promising results, the success of cancer immunotherapy in solid tumors has been limited due to several barriers, which include immunosuppressive tumor microenvironment (TME), inefficient trafficking, and heterogeneity of tumor antigens. This is further compounded by the high intra-tumoral pressure of solid tumors, which presents an additional challenge to successfully delivering treatments to solid tumors. In this review, we will outline and propose specific approaches that may overcome these immunological and physical barriers to improve the outcomes in solid tumor patients receiving immunotherapies.
RESUMEN
Chimeric Antigen Receptor T cell (CAR-T) therapies have demonstrated promising clinical response rates for patients with hematological malignancies. CAR-T cells are generated by bioengineering patient T cells to express CAR proteins that can specifically target tumor antigens. For CAR-T therapy to be effective in solid tumors, several factors including trafficking, activation, expansion, and persistence are important considerations in hostile tumor microenvironment (TME). Despite significant advances in CAR-T therapies, clinical success in solid tumor indications has been limited. The complex processes involved in CAR-T manufacturing and quality control (QC) contribute to high cost of these therapies, creating barriers to widespread adoption. The processes involved are not uniformly standardized and may require numerous manual handling steps. This chapter details strategies to overcome barriers to broad CAR-T application and reviews current production processes used for CAR-T manufacturing. Emphasis is placed on reproducibility, manufacturing costs, and product release testing. Implementing new processing alternatives and innovative CAR-T designs, along with further innovation and efficiencies will be key to more consistent CAR-T cell therapy success.
Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Reproducibilidad de los Resultados , Linfocitos T/metabolismo , Microambiente TumoralRESUMEN
BACKGROUND: Effective treatment of solid tumors requires multi-modality approaches. In many patients with stage IV liver disease, current treatments are not curative. Chimeric antigen receptor T cells (CAR-T) are an intriguing option following success in hematological malignancies, but this has not been translated to solid tumors. Limitations include sub-optimal delivery and elevated interstitial fluid pressures. We developed a murine model to test the impact of high-pressure regional delivery (HPRD) on trafficking to liver metastases (LM) and tumor response. MATERIALS AND METHODS: CAR-T were generated from CD45.1 mice and adoptively transferred into LM-bearing CD45.2 mice via regional or systemic delivery (RD, SD). Trafficking, tumor growth, and toxicity were evaluated with flow cytometry, tumor bioluminescence (TB, photons/sec log2-foldover baseline), and liver function tests (LFTs). RESULTS: RD of CAR-T was more effective at controlling tumor growth versus SD from post-treatment days (PTD) 2-7 (P = 0.002). HPRD resulted in increased CAR-T penetration versus low-pressure RD (LPRD, P = 0.004), suppression of tumor proliferation (P = 0.03), and trended toward improved long-term control at PTD17 (TB=3.7 versus 6.1, P = 0.47). No LFT increase was noted utilizing HPRD versus LPRD (AST/ALT P = 0.65/0.84) while improved LFTs in RD versus SD groups suggested better tumor control (HPRD AST/ALT P = 0.04/0.04, LPRD AST/ALT P = 0.02/0.02). CONCLUSIONS: Cellular immunotherapy is an emerging option for solid tumors. Our model suggests RD and HPRD improved CAR-T penetration into solid tumors with improved short-term tumor control. Barriers associated with SD can be overcome using RD techniques to maximize therapeutic delivery and HPRD may further augment efficacy without increased toxicity.
Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Neoplasias , Receptores Quiméricos de Antígenos , Animales , Neoplasias Colorrectales/terapia , Humanos , Inmunoterapia Adoptiva/métodos , Neoplasias Hepáticas/patología , Ratones , Neoplasias/terapia , Linfocitos TRESUMEN
Myeloid-derived suppressor cells (MDSCs) promote immunosuppressive activities in the tumor microenvironment (TME), resulting in increased tumor burden and diminishing the anti-tumor response of immunotherapies. While primary and metastatic tumors are typically the focal points of therapeutic development, the immune cells of the TME are differentially programmed by the tissue of the metastatic site. In particular, MDSCs are programmed uniquely within different organs in the context of tumor progression. Given that MDSC plasticity is shaped by the surrounding environment, the proteomes of MDSCs from different metastatic sites are hypothesized to be unique. A bottom-up proteomics approach using sequential window acquisition of all theoretical mass spectra (SWATH-MS) was used to quantify the proteome of CD11b+ cells derived from murine liver metastases (LM) and lung metastases (LuM). A comparative proteomics workflow was employed to compare MDSC proteins from LuM (LuM-MDSC) and LM (LM-MDSC) while also elucidating common signaling pathways, protein function, and possible drug-protein interactions. SWATH-MS identified 2516 proteins from 200 µg of sample. Of the 2516 proteins, 2367 have matching transcriptomic data. Upregulated proteins from lung and liver-derived murine CD11b+ cells with matching mRNA transcriptomic data were categorized based on target knowledge and level of drug development. Comparative proteomic analysis demonstrates that liver and lung tumor-derived MDSCs have distinct proteomes that may be subject to pharmacologic manipulation.
RESUMEN
Metastatic liver tumors have presented challenges with the use of checkpoint inhibitors (CPIs), with only limited success. We hypothesize that regional delivery (RD) of CPIs can improve activity in the liver and minimize systemic exposure, thereby reducing immune-related adverse events (irAE). Using a murine model of colorectal cancer liver metastases (LM), we confirmed high levels of PD-L1 expression on the tumor cells and liver myeloid-derived suppressor cells (L-MDSC). In vivo, we detected improved LM response at 3 mg/kg on PTD7 via portal vein (PV) regional delivery as compared to 3 mg/kg via tail vein (TV) systemic delivery (p = 0.04). The minimal effective dose at PTD7 was 5 mg/kg (p = 0.01) via TV and 0.3 mg/kg (p = 0.02) via PV. We detected 6.7-fold lower circulating CPI antibody levels in the serum using the 0.3 mg/kg PV treatment compared to the 5 mg/kg TV cohort (p < 0.001) without increased liver toxicity. Additionally, 3 mg/kg PV treatment resulted in increased tumor cell apoptotic signaling compared to 5 mg/kg TV (p < 0.05). Therefore, RD of an anti-PD-1 CPI therapy for CRCLM may improve the therapeutic index by reducing the total dose required and limiting the systemic exposure. These advantages could expand CPI indications for liver tumors.
RESUMEN
Angiosarcomas (AS) are a diverse group of soft tissue sarcomas, arising from blood and lymphatic vessels. They frequently present in the elderly, and in patients with previous radiation or lymphedema. A wide range of genetic derangements contribute to their development, and AS histology is often high-grade in keeping with aggressive disease biology. The clinical presentation, while often innocuous, is marked by its infiltrative and aggressive nature, with a proclivity for metastatic spread, and outcomes are often poor. Surgery is performed for localized, resectable cases. A multidisciplinary approach, appropriately employing surgery, radiation, chemotherapy, or potentially recently approved immune-oncology agents, can result in positive outcomes.
Asunto(s)
Hemangiosarcoma/terapia , Recurrencia Local de Neoplasia/prevención & control , Grupo de Atención al Paciente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Vasos Sanguíneos/patología , Vasos Sanguíneos/efectos de la radiación , Quimioterapia Adyuvante , Ensayos Clínicos Fase II como Asunto , Hemangiosarcoma/genética , Hemangiosarcoma/mortalidad , Hemangiosarcoma/patología , Humanos , Vasos Linfáticos/patología , Vasos Linfáticos/efectos de la radiación , Recurrencia Local de Neoplasia/epidemiología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Supervivencia sin Progresión , Radioterapia Adyuvante , Procedimientos Quirúrgicos OperativosRESUMEN
PURPOSE: To determine the safety and feasibility of pancreatic retrograde venous infusion (PRVI) utilizing a microvalvular infusion system (MVI) to deliver ethiodized oil (lipiodol) by means of the Pressure-Enabled Drug Delivery (PEDD) approach. METHODS: Utilizing transhepatic access, mapping of the pancreatic body and head venous anatomy was performed in 10 swine. PEDD was performed by cannulation of veins in the head (n = 4) and body (n = 10) of the pancreas with a MVI (Surefire® Infusion System (SIS), Surefire Medical, Inc (DBA TriSalus™ Life Sciences)) followed by infusion with lipiodol. Sets of animals were killed either immediately (n = 8) or at 4 days post-PRVI (n = 2). All pancreata were harvested and studied with micro-CT and histology. We also performed three-dimensional volumetric/multiplanar imaging to assess the vascular distribution of lipiodol within the glands. RESULTS: A total of 14 pancreatic veins were successfully infused with an average of 1.7 (0.5-2.0) mL of lipiodol. No notable change in serum chemistries was seen at 4 days. The signal-to-noise ratio (SNR) of lipiodol deposition was statistically increased both within the organ in target relative to non-target pancreatic tissue and compared to extra pancreatic tissue (p < 0.05). Histological evaluation demonstrated no evidence of pancreatic edema or ischemia. CONCLUSIONS: PEDD using the RVI approach for targeted pancreatic infusions is technically feasible and did not result in organ damage in this pilot animal study.
Asunto(s)
Sistemas de Liberación de Medicamentos , Aceite Etiodizado/administración & dosificación , Páncreas/efectos de los fármacos , Animales , Antineoplásicos/administración & dosificación , Infusiones Intravenosas , Modelos Animales , Presión , PorcinosRESUMEN
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that proliferate in the setting of cancer and have potent immunosuppressive functions hindering anti-tumor immunity. Here we establish that the immunologic landscape and tumor microenvironments (TME) vary between different organs which discretely shape MDSC repertoires. We found that pSTAT3 signaling exerts a dominant effect on MDSC programming in liver metastasis (LM). In contrast, in lung metastasis (LuM), MDSC programming is driven mainly by pSTAT5. Adoptive transfer of LM-MDSC into LuM resulted in a shift from pSTAT3 signaling to pSTAT5, in association with an overall shift toward lung MDSC programming. A shift from more immunosuppressive M-MDSC to G-MDSC, along with enhanced differentiation of MDSCs into pro-inflammatory M1 macrophages in LuM, indicated that MDSC plasticity and differentiation patterns are environmentally dependent. Using mass spectroscopy, we confirmed that LM-MDSCs showed enhanced expression of key proliferation pathway markers. This confirmed that liver-specific MDSC programing was comprehensive but reversible, implying that therapeutic targeting of LM-MDSC could prime the TME in a favorable manner. Our data suggest that MDSC programming in response to malignancy is highly dependent on organ-specific conditions and is modifiable.
Asunto(s)
Granulocitos/metabolismo , Neoplasias Pulmonares/metabolismo , Monocitos/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Microambiente Tumoral , Animales , Línea Celular Tumoral , Granulocitos/patología , Neoplasias Pulmonares/patología , Masculino , Ratones , Monocitos/patología , Células Supresoras de Origen Mieloide/patología , Especificidad de ÓrganosRESUMEN
The SARS-CoV-2 virus responsible for the COVID-19 pandemic can result in severe or fatal disease in a subset of infected patients. While the pathogenesis of severe COVID-19 disease has yet to be fully elucidated, an overexuberant and harmful immune response to the SARS-CoV-2 virus may be a pivotal aspect of critical illness in this patient population. The inflammatory cytokine, IL-6, has been found to be consistently elevated in severely ill COVID-19 patients, prompting speculation that IL-6 is an important driver of the pathologic process. The inappropriately elevated levels of inflammatory cytokines in COVID-19 patients is similar to cytokine release syndrome (CRS) observed in cell therapy patients. We sought to describe outcomes in a series of severely ill patients with COVID-19 CRS following treatment with anti-IL-6/IL-6-Receptor (anti-IL-6/IL-6-R) therapy, including tocilizumab or siltuximab. At our academic community medical center, we formed a multi-disciplinary committee for selecting severely ill COVID-19 patients for therapy with anti-IL-6 or IL-6-R agents. Key selection criteria included evidence of hyperinflammation, most notably elevated levels of C-reactive protein (CRP) and ferritin, and an increasing oxygen requirement. By the data cutoff point, we treated 31 patients with anti-IL-6/IL-6-R agents including 12 who had already been intubated. Overall, 27 (87%) patients are alive and 24 (77%) have been discharged from the hospital. Clinical responses to anti-IL-6/IL-6-R therapy were accompanied by significant decreases in temperature, oxygen requirement, CRP, IL-6, and IL-10 levels. Based on these data, we believe anti-IL-6/IL-6-R therapy can be effective in managing early CRS related to COVID-19 disease. Further study of anti-IL-6/IL-6-R therapy alone and in combination with other classes of therapeutics is warranted and trials are underway.
RESUMEN
In recent years, cell therapy technologies have resulted in impressive results in hematologic malignancies. Treatment of solid tumors with chimeric antigen receptor T-cells (CAR-T) has been less successful. Solid tumors present challenges not encountered with hematologic cancers, including high intra-tumoral pressure and ineffective CAR-T trafficking to the site of disease. Novel delivery methods may enable CAR-T therapies for solid tumor malignancies. A patient with liver metastases secondary to pancreatic adenocarcinoma received CAR-T targeting carcinoembryonic antigen (CEA). Previously we reported that Pressure-Enabled Drug Delivery (PEDD) enhanced CAR-T delivery to liver metastases 5.2-fold. Three doses of anti-CEA CAR-T were regionally delivered via hepatic artery infusion (HAI) using PEDD technology to optimize the therapeutic index. Interleukin-2 was systemically delivered by continuous intravenous infusion to support CAR-T in vivo. HAI of anti-CEA CAR-T was not associated with any serious adverse events (SAEs) above grade 3 and there were no on-target/off-tumor SAEs. Following CAR-T treatment, positron emission tomography-CT demonstrated a complete metabolic response within the liver, which was durable and sustained for 13 months. The response was accompanied by normalization of serum tumor markers and an abundance of CAR+ cells found within post-treatment tumor specimens. The findings from this report exhibit biologic activity and safety of regionally infused CAR-T for an indication with limited immune-oncology success to date. Further studies will determine how HAI of CAR-T may be included in multidisciplinary treatment plans for patients with liver metastases. ClinicalTrials.gov number, NCT02850536.
Asunto(s)
Neoplasias Hepáticas/genética , Sistemas de Liberación de Medicamentos , Humanos , Inmunoterapia/métodos , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Receptores Quiméricos de Antígenos/metabolismo , Microambiente TumoralRESUMEN
BACKGROUND: We describe the use of pancreatic retrograde venous infusion in an orthotopic murine model of pancreatic ductal adenocarcinoma and hypothesize that pancreatic retrograde venous infusion delivery of gemcitabine will increase concentrations of gemcitabine in the tumor and the subsequent tumor response to treatment. METHODS: Murine pancreatic ductal adenocarcinoma (KPC4580P) was transplanted onto the pancreatic tail of C57BL/6J mice. Groups (n = 15) of mice were assigned to sham laparotomy and 100 mg/kg intraperitoneal infusion of gemcitabine (systemic gemcitabine), pancreatic venous isolation with pancreatic retrograde venous infusion of 100 mg/kg gemcitabine, or pancreatic retrograde venous infusion with saline infusion. Tumor pressures were recorded during pancreatic retrograde venous infusion. Mice were killed at 1 hour or 7 days after infusion. RESULTS: Baseline tumor pressures were 45 ± 8 mm Hg, and pancreatic retrograde venous infusion increased tumor pressures by 29 ± 6 mm Hg (P < .01). Pancreatic retrograde venous infusion gemcitabine mice had greater tumor gemcitabine concentrations compared with systemic gemcitabine (127 vs 19 ng/mg; P < .01) and lesser tumor volumes compared with both systemic gem and pancreatic retrograde venous infusion with saline (274 vs 857 vs 629 mm3; P < .01). CONCLUSION: Pancreatic retrograde venous infusion increased tumor pressures greater than baseline, improved gemcitabine delivery, and increased the treatment response. These findings suggest that pressurized, regional delivery overcomes the increased pressure barrier in pancreatic ductal adenocarcinoma. Additional preclinical studies with cytotoxic and immunotherapeutic agents and clinical trials using pressure-enabled drug delivery with pancreatic retrograde venous infusion devices are underway.
Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Carcinoma Ductal Pancreático/tratamiento farmacológico , Desoxicitidina/análogos & derivados , Infusiones Intralesiones/métodos , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Antimetabolitos Antineoplásicos/farmacocinética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral/trasplante , Desoxicitidina/administración & dosificación , Desoxicitidina/farmacocinética , Modelos Animales de Enfermedad , Humanos , Infusiones Intravenosas/métodos , Masculino , Ratones , Páncreas/irrigación sanguínea , Páncreas/patología , Neoplasias Pancreáticas/patología , Presión , Distribución Tisular , GemcitabinaRESUMEN
Effective chimeric antigen receptor-modified T-cell (CAR-T) therapy for liver metastases (LM) will require innovative solutions to ensure efficient delivery and minimization of systemic toxicity. We previously demonstrated the safety of CAR-T hepatic artery infusions (HAI). We subsequently conducted the phase 1b HITM-SIR trial, in which six patients (pts) with CEA+ LM received anti-CEA CAR-T HAIs and selective internal radiation therapy (SIRT). The primary endpoint was safety with secondary assessments of biologic activity. Enrolled pts had a mean LM size of 6.4 cm, 4 pts had >10 LM, and pts received an average of two lines of prior systemic therapy. No grade 4 or 5 toxicities were observed, and there were no instances of severe cytokine-release syndrome (CRS) or neurotoxicity. The mean transduction efficiency was 60.4%. Following CAR-T HAI, reduced levels of GM-CSF-R, IDO, and PD-L1 were detected in LM, and serum CEA levels were stable or decreased in all subjects. Median survival time was 8 months (mean 11, range 4-31). Anti-CEA CAR-T HAI with subsequent SIRT was well tolerated, and biologic responses were demonstrated following failure of conventional therapy. HAI of CAR-T was once again confirmed not to be associated with severe CRS or neurotoxicity.