Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37096663

RESUMEN

In value-based decision making, options are selected according to subjective values assigned by the individual to available goods and actions. Despite the importance of this faculty of the mind, the neural mechanisms of value assignments, and how choices are directed by them, remain obscure. To investigate this problem, we used a classic measure of utility maximization, the Generalized Axiom of Revealed Preference, to quantify internal consistency of food preferences in Caenorhabditis elegans, a nematode worm with a nervous system of only 302 neurons. Using a novel combination of microfluidics and electrophysiology, we found that C. elegans food choices fulfill the necessary and sufficient conditions for utility maximization, indicating that nematodes behave as if they maintain, and attempt to maximize, an underlying representation of subjective value. Food choices are well-fit by a utility function widely used to model human consumers. Moreover, as in many other animals, subjective values in C. elegans are learned, a process we find requires intact dopamine signaling. Differential responses of identified chemosensory neurons to foods with distinct growth potentials are amplified by prior consumption of these foods, suggesting that these neurons may be part of a value-assignment system. The demonstration of utility maximization in an organism with a very small nervous system sets a new lower bound on the computational requirements for utility maximization and offers the prospect of an essentially complete explanation of value-based decision making at single neuron resolution in this organism.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Alimentos , Preferencias Alimentarias , Transducción de Señal
2.
J Neurophysiol ; 103(6): 3501-15, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20393064

RESUMEN

Many rhythmic behaviors, such as locomotion and vocalization, involve temporally dynamic patterns. How does the brain generate temporal complexity? Here, we use the vocal central pattern generator (CPG) of Xenopus laevis to address this question. Isolated brains can elicit fictive vocalizations, allowing us to study the CPG in vitro. The X. laevis advertisement call is temporally modulated; calls consist of rhythmic click trills that alternate between fast (approximately 60 Hz) and slow (approximately 30 Hz) rates. We investigated the role of two CPG nuclei--the laryngeal motor nucleus (n.IX-X) and the dorsal tegmental area of the medulla (DTAM)--in setting rhythm frequency and call durations. We discovered a local field potential wave in DTAM that coincides with fictive fast trills and phasic activity that coincides with fictive clicks. After disrupting n.IX-X connections, the wave persists, whereas phasic activity disappears. Wave duration was temperature dependent and correlated with fictive fast trills. This correlation persisted when wave duration was modified by temperature manipulations. Selectively cooling DTAM, but not n.IX-X, lengthened fictive call and fast trill durations, whereas cooling either nucleus decelerated the fictive click rate. The N-methyl-d-aspartate receptor (NMDAR) antagonist dAPV blocked waves and fictive fast trills, suggesting that the wave controls fast trill activation and, consequently, call duration. We conclude that two functionally distinct CPG circuits exist: 1) a pattern generator in DTAM that determines call duration and 2) a rhythm generator (spanning DTAM and n.IX-X) that determines click rates. The newly identified DTAM pattern generator provides an excellent model for understanding NDMAR-dependent rhythmic circuits.


Asunto(s)
Nervios Laríngeos/fisiología , Bulbo Raquídeo/citología , Receptores de N-Metil-D-Aspartato/fisiología , Vocalización Animal/fisiología , Xenopus laevis/fisiología , Vías Aferentes , Animales , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Bulbo Raquídeo/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Periodicidad , Serotonina/farmacología , Temperatura , Factores de Tiempo , Valina/análogos & derivados , Valina/farmacología , Vocalización Animal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA