RESUMEN
PURPOSE: To evaluate transcytosis of immunoglobulin G (IgG) by the neonatal Fc receptor (FcRn) in adult primate intestine to determine whether this is a means for oral delivery of monoclonal antibodies (mAbs). METHODS: Relative regional expression of FcRn and localization in human intestinal mucosa by RT-PCR, ELISA & immunohistochemistry. Transcytosis of full-length mAbs (sandwich ELISA-based detection) across human intestinal segments mounted in Ussing-type chambers, human intestinal (caco-2) cell monolayers grown in transwells, and serum levels after regional intestinal delivery in isoflurane-anesthetized cynomolgus monkeys. RESULTS: In human intestine, there was an increasing proximal-distal gradient of mucosal FcRn mRNA and protein expression. In cynomolgus, serum mAb levels were greater after ileum-proximal colon infusion than after administration to stomach or proximal small intestine (1-5 mg/kg). Serum levels of wild-type mAb dosed into ileum/proximal colon (2 mg/kg) were 124 ± 104 ng/ml (n = 3) compared to 48 ± 48 ng/ml (n = 2) after a non-FcRn binding variant. In vitro, mAb transcytosis in polarized caco-2 cell monolayers and was not enhanced by increased apical cell surface IgG binding to FcRn. An unexpected finding in primate small intestine, was intense FcRn expression in enteroendocrine cells (chromagranin A, GLP-1 and GLP-2 containing). CONCLUSIONS: In adult primates, FcRn is expressed more highly in distal intestinal epithelial cells. However, mAb delivery to that region results in low serum levels, in part because apical surface FcRn binding does not influence mAb transcytosis. High FcRn expression in enteroendocrine cells could provide a novel means to target mAbs for metabolic diseases after systemic administration.
Asunto(s)
Regulación de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/biosíntesis , Inmunoglobulina G/metabolismo , Mucosa Intestinal/metabolismo , Receptores Fc/biosíntesis , Transcitosis/fisiología , Adulto , Animales , Células CACO-2 , Femenino , Humanos , Macaca fascicularis , Masculino , Persona de Mediana Edad , Técnicas de Cultivo de Órganos , ARN Mensajero/biosíntesis , Ratas , Adulto JovenRESUMEN
Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We compared two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs) and induced pluripotent stem cell (iPSC)-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, intestinal organogenesis was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER) measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein (Pgp) transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.
RESUMEN
Of all the age-related declines, memory loss is one of the most devastating. While conditions that increase longevity have been identified, the effects of these longevity-promoting factors on learning and memory are unknown. Here we show that the C. elegans Insulin/IGF-1 receptor mutant daf-2 improves memory performance early in adulthood and maintains learning ability better with age but, surprisingly, demonstrates no extension in long-term memory with age. By contrast, eat-2 mutants, a model of Dietary Restriction (DR), exhibit impaired long-term memory in young adulthood but maintain this level of memory longer with age. We find that crh-1, the C. elegans homolog of the CREB transcription factor, is required for long-term associative memory, but not for learning or short-term memory. The expression of crh-1 declines with age and differs in the longevity mutants, and CREB expression and activity correlate with memory performance. Our results suggest that specific longevity treatments have acute and long-term effects on cognitive functions that decline with age through their regulation of rate-limiting genes required for learning and memory.