Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 901-924, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36826494

RESUMEN

Chronic kidney disease (CKD) affects a huge portion of the world's population and frequently leads to cardiovascular diseases (CVDs). It might be because of common risk factors between chronic kidney disease and cardiovascular diseases. Renal dysfunction caused by chronic kidney disease creates oxidative stress which in turn leads to cardiovascular diseases. Oxidative stress causes endothelial dysfunction and inflammation in heart which results in atherosclerosis. It ends in clogging of veins and arteries that causes cardiac stroke and myocardial infarction. To develop an innovative therapeutic approach and new drugs to treat these diseases, it is important to understand the pathophysiological mechanism behind the CKD and CVDs and their interrelationship. Natural phytoconstituents of plants such as polyphenolic compounds are well known for their medicinal value. Polyphenols are plant secondary metabolites with immense antioxidant properties, which can protect from free radical damage. Nowadays, polyphenols are generating a lot of buzz in the scientific community because of their potential health benefits especially in the case of heart and kidney diseases. This review provides a detailed account of the pathophysiological link between CKD and CVDs and the pharmacological potential of polyphenols and their nanoformulations in promoting cardiovascular and renal health.


Asunto(s)
Enfermedades Cardiovasculares , Glomerulonefritis , Insuficiencia Renal Crónica , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/etiología , Enfermedad Crónica , Riñón , Factores de Riesgo , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/complicaciones
2.
Arch Microbiol ; 205(3): 93, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800037

RESUMEN

In the recent past, the occurrence of fungal infections has increased drastically and candidiasis, caused prominently by Candida albicans, is foremost among them which has caused significant mortality and morbidity majorly in immune-compromised patients. Shikonin is a well-known natural naphthazarin derivative with promising antifungal efficacy, but it's mechanism of action is still unclear. Keeping this in view, present work was designed to get a mechanistic insight of anti-candida efficacy of shikonin via in vitro experiments and in situ molecular modelling studies. The current exploratory study is based on research that uses both qualitative and quantitative techniques, including minimum inhibitory concentration, minimum biofilm inhibitory concentration, time kill assay, cell cycle analysis and apoptotic assays, static biofilm formation assays, microscopic biofilm assessment assays, ergosterol content estimation and molecular docking/simulation studies. The study revealed a notable effect of shikonin against Candida albicans, including retardation of biofilms. Shikonin, with its increasing concentration leads to candidal cell apoptosis and necrosis establishing its dose-dependent effect. Additionally, it exhibited fungicidal activity via a mechanism of action likely related to ergosterol complexation which was further corroborated by molecular docking and simulation studies.


Asunto(s)
Candida albicans , Naftoquinonas , Humanos , Simulación del Acoplamiento Molecular , Candida , Antifúngicos/farmacología , Antifúngicos/metabolismo , Naftoquinonas/farmacología , Pruebas de Sensibilidad Microbiana , Biopelículas , Ergosterol
3.
Biotechnol Genet Eng Rev ; : 1-25, 2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36683273

RESUMEN

Multidrug resistance (MDR) is considered as a major obstacle in achieving an effective treatment of breast cancer. Paclitaxel has been used to treat cancers of the cervical, breast, ovarian and brain but MDR limits its therapeutic potential. Phytochemicals have received much interest in recent decades especially in combination approaches to tackle MDR due to their negligible harm to healthy cells and synergistic potential. Considering this notion, the present study aimed at investigating the synergistic activity of 4-MTBITC and PTX against a panel of breast cancer cells. Our results revealed that the combination had a significant antiproliferative activity against T-47D cells. Mechanistic studies revealed that 4-MTBITC and PTX also promoted the production of reactive oxygen species (ROS) and reduced mitochondrial membrane potential. In the presence of 4-MTBITC- PTX, T-47D cells were found to be arrested in the G2/M phase which also confirmed the enhancement of late apoptotic cell population in the flow cytometer analysis. In western blot experiment, the combination had a significant decrease in Bcl-xl protein level, whereas a higher level of p53, cleaved caspase-3, and cleaved caspase-9 proteins compared to individual treatment in T-47D cells. The RT-qPCR analysis also showed that the combination had significant upregulation in the gene expression of p53, cytochrome-c, Apaf-1 and downregulation in the expression of Bcl-2 gene in T-47D cells. Hence, all the results showed that a combination of 4-MTBITC-PTX significantly enhanced the apoptosis pathway in the T-47D cell line which indicates its clinical application for the treatment of breast cancer.Abbreviations: Apaf-1: Apoptotic protease activating factor 1; AO/EB: Acridine orange/ethidium bromide; Bcl-2: B-cell lymphoma 2; CI: Combination Index; Cyt-c: Cytochrome c; CO2: Carbon dioxide; DCFH-DA 2,7-Dichloroflourescein diacetate; DMEM: Dulbecco's modified Eagle's medium; ELISA: Enzyme-linked immunosorbent assay; EA: Early apoptosis; EDTA: Ethylenediaminetetraacetic acid; L929: Normal mouse fibroblast cells; LA: Late apoptosis; L: Live; 4-MTBITC: 4-methylthiobutyl isothiocyanate; MCF-7: Human breast cancer cells; MDA-MB-231: Human triple negative breast cancer cells; MMP: Mitochondria membrane potential; MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide; NCCS: National Centre for Cell Science; N: Necrotic; PTX Paclitaxel; PVDF: Polyvinylidene fluoride; PAGE: Polyacrylamide gel electrophoresis; PBS: Phosphate-buffered saline; RPMI-1640: Roswell Park Memorial Institute Medium- 1640; RT-qPCR: Quantitative real-time polymerase chain reaction; ROS: Reactive oxygen species; Rh-123: Rhodamine123; g Relative centrifugal force; SDS: Sodium dodecyl sulphate; SEM: Scanning electron microscopy; T-47D: Human estrogen positive breast cancer cells; WB: Western blotting.

4.
Front Pharmacol ; 13: 1020602, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330087

RESUMEN

Nanoformulation-based combinational drug delivery systems are well known to overcome drug resistance in cancer management. Among them, nanoemulsions are well-known and thermodynamically stable drug delivery systems suitable for carrying hydrophobic drugs and phytoconstituents to tackle drug-resistant cancers. In the present study, we have investigated the effect of paclitaxel in combination with erucin (natural isothiocyanate isolated from the seeds of Eruca sativa) loaded in the frankincense oil-based nanoemulsion formulation. The choice of frankincense oil for the current study was based on reported research investigations stating its magnificient therapeutic potential against breast cancer. Optimized nanoemulsion of paclitaxel (PTX) and erucin (ER) combination (EPNE) provided sustained release and exhibited enhanced cytotoxicity towards human epithelial breast cancer cells (T-47D) as compared to individual ER and PTX. EPNE was further assessed for its antitumor activity in the 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer mice model. EPNE significantly decreased the levels of hepatic and renal parameters along with oxidative stress in breast cancer mice. Furthermore, EPNE also showed decreased levels of inflammatory cytokines TNF-α, IL-6. Histopathological examinations revealed restoration of the tumorous breast to normal tissues in EPNE-treated breast cancer mice. Therefore, EPNE can act as a viable lead and therapeutic option for drug-resistant breast cancer.

5.
Sci Rep ; 12(1): 12570, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869268

RESUMEN

Roylea cinerea (D.Don) Baillon an indigenous medicinal plant of Lamiaceae family used for the treatment of several diseases. In the present study, its aqueous (leaves) extract was tested for genoprotective action against atrazine-induced chromosomal aberrations in the root tip cells of Allium cepa. Atrazine is a herbicide of triazine class commonly used to inhibit the growth of broad leaf and grassy weeds. In order to find the concentration of atrazine that exhibits maximum toxicity, its different concentrations (1, 5 and 10 µg/mL) were tested. It was observed that 10 µg/mL concentration was more toxic as it reduced the mitotic index and also increased the chromosomal aberrations. Among all the tested concentrations of aqueous (leaves) extracts (0.25. 0.5, 1.0, 1.5 and 3.0 µg/mL), the3.0 µg/mL concentration in both modes of experiments i.e. pre and post showed a significant reduction in chromosomal aberrations induced by atrazine. To understand the mechanism of protection by plant extract on atrazine-induced chromosomal abnormalities the RT-qPCR studies were conducted to observe the expression of marker genes Cyclin-dependent kinases (CDKs) (CDKA:1, CDKB2:1 and CDKD1:1. For this, the RNA was extracted from root tips treated with extract along with atrazine by TRIzol®. It was observed that aqueous extract of Roylea cinerea (D.Don) Baillon leaves upregulated the CDKs gene expression in both the modes i.e. pre and post treatments. A critical analysis of results indicated that aqueous extract ameliorated the chromosomal aberrations caused by atrazine which may be be due to the increased expression level of CDKs genes.


Asunto(s)
Atrazina , Lamiaceae , Atrazina/toxicidad , Aberraciones Cromosómicas/inducido químicamente , Quinasas Ciclina-Dependientes/genética , Cebollas/genética , Hojas de la Planta , Raíces de Plantas
6.
Environ Sci Pollut Res Int ; 29(12): 17189-17208, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34664164

RESUMEN

Argemone mexicana(Pepaveraceae) is an important medicinal plant commonly known as 'maxican prickly poppy' and is traditionally used to treat skin diseases. In the present study, the extract/fractions of aerial parts of A. mexicana after carrying out the organoleptic characteristics were sequentially extracted with the solvents of increasing polarities. Total fractions were examined for their radical scavenging activities in DPPH and DNA nicking assays. Among all, maximum antioxidant activity was shown by chloroform fraction (AmC) in DPPH assay with IC50 of 26.12 µg/ml, and DNA nicking assay showed 80.91% protective potential. The AmC fraction was analyzed for its antibacterial, cytotoxic potential, cell cycle analysis, mitochondrial membrane potential (MMP) and accumulation of reactive oxygen species (ROS) using A431 cell line. The AmC fraction exhibited remarkable antibacterial activity against bacterial strains in the order Klebsiella pneumoniae> Bacillussubtilis> Salmonella typhi> Staphylococcus epidermidis. The cytotoxic potential of the AmC fraction was analyzed in skin epidermoid carcinoma (A431) cells, osteosarcoma (MG-63) and cervical (HeLa) cell lines with a GI50 value of 47.04 µg/ml, 91.46 µg/ml and 102.90 µg/ml, respectively. The AmC fraction was extended further to explore its role in cell death using A431 cell line. Phase contrast and scanning electron microscopic studies on A431 cells exhibited all the characteristics indicative of apoptosis, viz., viability loss, cell shrinkage, cell rounding-off, DNA fragmentation and formation of apoptotic bodies. Flow cytometric analysis revealed enhanced ROS level, decreased MMP and arrest cell cycle at the G0/G1 phase further strengthened cell death by apoptosis. Increased expressions of apoptotic markers (p53, PUMA, cyt c, Fas and Apaf-1) were confirmed by RT-qPCR analysis. Furthermore, the AmC fraction was subjected to ultra-high-performance liquid chromatography, which revealed the presence of different polyphenols in the order: caffeic acid> epicatechin> kaempferol> chlorogenic acid> gallic acid> catechin> ellagic acid >umbeliferone> quercetin> coumaric acid. A critical analysis of results revealed that the AmC fraction induced cell death in epidermoid carcinoma cells via ROS and p53-mediated apoptotic pathway which may be ascribed to the presence of polyphenols in it.


Asunto(s)
Apoptosis , Argemone , Extractos Vegetales , Argemone/química , Línea Celular Tumoral , Cloroformo , Humanos , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
7.
Arch Pharm (Weinheim) ; 355(2): e2100368, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34783073

RESUMEN

Keeping in view the emerging need for potent and safer anti-breast cancer agents as well as the pharmacological attributes of isatin, quinolone, and morpholine derivatives, novel hydrazine-linked morpholinated isatin-quinoline hybrids were designed, synthesized, and evaluated as anti-breast cancer agents. The synthesized hybrid compounds were preliminarily screened against two breast cancer cell lines (MCF-7 and MDA-MB-231). Almost all synthetics showed potent inhibitory potential against hormone-positive MCF-7 cells while being inactive against hormone-negative MDA-MB-231 cells. Potent compounds were further evaluated against the L929 (noncancerous skin fibroblast) cell line and found to be highly selective for MCF-7 cells over L929 cells. Cell cycle analysis confirmed that the most potent compound AS-4 (MCF-7: GI50 = 4.36 µM) causes mitotic arrest at the G2 /M phase. Due to higher selectivity toward estrogen receptor alpha (ERα)-dependent MCF-7 cells, various binding interactions of AS-4 with ERα are also streamlined, suggesting the capability of AS-4 to completely block ERα. Overall, the study suggests that AS-4 can act as a potential lead for further development of potent and safer anti-breast cancer agents.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Isatina/farmacología , Quinolinas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular , Línea Celular Tumoral , Receptor alfa de Estrógeno/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Isatina/síntesis química , Isatina/química , Células MCF-7 , Ratones , Quinolinas/síntesis química , Quinolinas/química , Relación Estructura-Actividad
8.
Curr Drug Deliv ; 19(5): 560 - 586, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34906056

RESUMEN

The conventional anticancer chemotherapies not only cause serious toxic effects but also produce resistance in tumor cells exposed to long-term therapy. Usually, the selective killing of metastasized cancer cells requires long-term therapy with higher drug doses because the cancer cells develop resistance due to the induction of poly-glycoproteins (P-gps) that act as a transmembrane efflux pump to transport drugs out of the cells. During the last few decades, scientists have been exploring new anticancer drug delivery systems such as microencapsulation, hydrogels, and nanotubes to improve bioavailability, reduce drug-dose requirement, decrease multiple drug resistance, and save normal cells as non-specific targets. Hopefully, the development of novel drug delivery vehicles (nanotubes, liposomes, supramolecules, hydrogels, and micelles) will assist in delivering drug molecules at the specific target site and reduce undesirable side effects of anticancer therapies in humans. Nanoparticles and lipid formulations are also designed to deliver a small drug payload at the desired tumor cell sites for their anticancer actions. This review will focus on the recent advances in drug delivery systems and their application in treating different cancer types in humans.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Sistemas de Liberación de Medicamentos , Humanos , Hidrogeles/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...