Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chemistry ; 29(29): e202203868, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36912255

RESUMEN

Mycobacterium tuberculosis (Mtb) was responsible for approximately 1.6 million deaths in 2021. With the emergence of extensive drug resistance, novel therapeutic agents are urgently needed, and continued drug discovery efforts required. Host-derived lipids such as cholesterol not only support Mtb growth, but are also suspected to function in immunomodulation, with links to persistence and immune evasion. Mtb cytochrome P450 (CYP) enzymes facilitate key steps in lipid catabolism and thus present potential targets for inhibition. Here we present a series of compounds based on an ethyl 5-(pyridin-4-yl)-1H-indole-2-carboxylate pharmacophore which bind strongly to both Mtb cholesterol oxidases CYP125 and CYP142. Using a structure-guided approach, combined with biophysical characterization, compounds with micromolar range in-cell activity against clinically relevant drug-resistant isolates were obtained. These will incite further development of much-needed additional treatment options and provide routes to probe the role of CYP125 and CYP142 in Mtb pathogenesis.


Asunto(s)
Mycobacterium tuberculosis , Sistema Enzimático del Citocromo P-450/metabolismo , Colesterol/química , Descubrimiento de Drogas , Antituberculosos/farmacología , Antituberculosos/química
2.
bioRxiv ; 2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36798186

RESUMEN

Cells rely on antioxidants to survive. The most abundant antioxidant is glutathione (GSH). The synthesis of GSH is non-redundantly controlled by the glutamate-cysteine ligase catalytic subunit (GCLC). GSH imbalance is implicated in many diseases, but the requirement for GSH in adult tissues is unclear. To interrogate this, we developed a series of in vivo models to induce Gclc deletion in adult animals. We find that GSH is essential to lipid abundance in vivo. GSH levels are reported to be highest in liver tissue, which is also a hub for lipid production. While the loss of GSH did not cause liver failure, it decreased lipogenic enzyme expression, circulating triglyceride levels, and fat stores. Mechanistically, we found that GSH promotes lipid abundance by repressing NRF2, a transcription factor induced by oxidative stress. These studies identify GSH as a fulcrum in the liver's balance of redox buffering and triglyceride production.

3.
Nat Chem Biol ; 18(12): 1388-1398, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097295

RESUMEN

The Janus tyrosine kinase (JAK) family of non-receptor tyrosine kinases includes four isoforms (JAK1, JAK2, JAK3, and TYK2) and is responsible for signal transduction downstream of diverse cytokine receptors. JAK inhibitors have emerged as important therapies for immun(onc)ological disorders, but their use is limited by undesirable side effects presumed to arise from poor isoform selectivity, a common challenge for inhibitors targeting the ATP-binding pocket of kinases. Here we describe the chemical proteomic discovery of a druggable allosteric cysteine present in the non-catalytic pseudokinase domain of JAK1 (C817) and TYK2 (C838), but absent from JAK2 or JAK3. Electrophilic compounds selectively engaging this site block JAK1-dependent trans-phosphorylation and cytokine signaling, while appearing to act largely as 'silent' ligands for TYK2. Importantly, the allosteric JAK1 inhibitors do not impair JAK2-dependent cytokine signaling and are inactive in cells expressing a C817A JAK1 mutant. Our findings thus reveal an allosteric approach for inhibiting JAK1 with unprecedented isoform selectivity.


Asunto(s)
Cisteína , Proteómica , Transducción de Señal , Citocinas , Isoformas de Proteínas
5.
Eur J Med Chem ; 230: 114105, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35065413

RESUMEN

There is a pressing need for new drugs against tuberculosis (TB) to combat the growing resistance to current antituberculars. Herein a novel strategy is described for hit generation against promising TB targets involving X-ray crystallographic screening in combination with phenotypic screening. This combined approach (XP Screen) affords both a validation of target engagement as well as determination of in cellulo activity. The utility of this method is illustrated by way of an XP Screen against CYP121A1, a cytochrome P450 enzyme from Mycobacterium tuberculosis (Mtb) championed as a validated drug discovery target. A focused screening set was synthesized and tested by such means, with several members of the set showing promising activity against Mtb strain H37Rv. One compound was observed as an X-ray hit against CYP121A1 and showed improved activity against Mtb strain H37Rv under multiple assay conditions (pan-assay activity). Data obtained during X-ray crystallographic screening were utilized in a structure-based campaign to design a limited number of analogues (less than twenty), many of which also showed pan-assay activity against Mtb strain H37Rv. These included the benzo[b][1,4]oxazine derivative (MIC90 6.25 µM), a novel hit compound suitable as a starting point for a more involved hit to lead candidate medicinal chemistry campaign.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Antituberculosos/farmacología , Diseño de Fármacos , Humanos , Tuberculosis/tratamiento farmacológico , Rayos X
6.
Nat Chem ; 14(1): 15-24, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34903857

RESUMEN

Carbapenems are vital antibiotics, but their efficacy is increasingly compromised by metallo-ß-lactamases (MBLs). Here we report the discovery and optimization of potent broad-spectrum MBL inhibitors. A high-throughput screen for NDM-1 inhibitors identified indole-2-carboxylates (InCs) as potential ß-lactamase stable ß-lactam mimics. Subsequent structure-activity relationship studies revealed InCs as a new class of potent MBL inhibitor, active against all MBL classes of major clinical relevance. Crystallographic studies revealed a binding mode of the InCs to MBLs that, in some regards, mimics that predicted for intact carbapenems, including with respect to maintenance of the Zn(II)-bound hydroxyl, and in other regards mimics binding observed in MBL-carbapenem product complexes. InCs restore carbapenem activity against multiple drug-resistant Gram-negative bacteria and have a low frequency of resistance. InCs also have a good in vivo safety profile, and when combined with meropenem show a strong in vivo efficacy in peritonitis and thigh mouse infection models.


Asunto(s)
Inhibidores de beta-Lactamasas/farmacología , beta-Lactamas/metabolismo , Animales , Bacterias Gramnegativas/efectos de los fármacos , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Unión Proteica , Relación Estructura-Actividad , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/metabolismo
7.
Nat Chem ; 13(11): 1081-1092, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34504315

RESUMEN

Recent advances in chemical proteomics have begun to characterize the reactivity and ligandability of lysines on a global scale. Yet, only a limited diversity of aminophilic electrophiles have been evaluated for interactions with the lysine proteome. Here, we report an in-depth profiling of >30 uncharted aminophilic chemotypes that greatly expands the content of ligandable lysines in human proteins. Aminophilic electrophiles showed disparate proteomic reactivities that range from selective interactions with a handful of lysines to, for a set of dicarboxaldehyde fragments, remarkably broad engagement of the covalent small-molecule-lysine interactions captured by the entire library. We used these latter 'scout' electrophiles to efficiently map ligandable lysines in primary human immune cells under stimulatory conditions. Finally, we show that aminophilic compounds perturb diverse biochemical functions through site-selective modification of lysines in proteins, including protein-RNA interactions implicated in innate immune responses. These findings support the broad potential of covalent chemistry for targeting functional lysines in the human proteome.


Asunto(s)
Lisina/química , Proteoma/química , Células HEK293 , Humanos , Ligandos , Proteómica/métodos , Relación Estructura-Actividad
9.
Anal Chem ; 89(18): 9976-9983, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28803470

RESUMEN

Given the frequent use of DMSO in biochemical and biophysical assays, it is desirable to understand the influence of DMSO concentration on the dissociation or unfolding behavior of proteins. In this study, the effects of DMSO on the structure and interactions of avidin and Mycobacterium tuberculosis (Mtb) CYP142A1 were assessed through collision-induced dissociation (CID) and collision-induced unfolding (CIU) as monitored by nanoelectrospray ionization-ion mobility-mass spectrometry (nESI-IM-MS). DMSO concentrations higher than 4% (v/v) destabilize the avidin tetramer toward dissociation and unfolding, via both its effects on charge state distribution (CSD) as well as at the level of individual charge states. In contrast, DMSO both protects against heme loss and increases the stability of CYP142A1 toward unfolding even up to 40% DMSO. Tandem MS/MS experiments showed that DMSO could modify the dissociation pathway of CYP142A1, while CIU revealed the protective effect of the heme group on the structure of CYP142A1.


Asunto(s)
Avidina/química , Sistema Enzimático del Citocromo P-450/química , Dimetilsulfóxido/farmacología , Mycobacterium tuberculosis/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Dimetilsulfóxido/química , Conformación Proteica , Desplegamiento Proteico , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
10.
Biochemistry ; 56(11): 1559-1572, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28169518

RESUMEN

Similarity between the ligand binding profiles of enzymes may aid functional characterization and be of greater relevance to inhibitor development than sequence similarity or structural homology. Fragment screening is an efficient approach for characterization of the ligand binding profile of an enzyme and has been applied here to study the family of cytochrome P450 enzymes (P450s) expressed by Mycobacterium tuberculosis (Mtb). The Mtb P450s have important roles in bacterial virulence, survival, and pathogenicity. Comparing the fragment profiles of seven of these enzymes revealed that P450s which share a similar biological function have significantly similar fragment profiles, whereas functionally unrelated or orphan P450s exhibit distinct ligand binding properties, despite overall high structural homology. Chemical structures that exhibit promiscuous binding between enzymes have been identified, as have selective fragments that could provide leads for inhibitor development. The similarity between the fragment binding profiles of the orphan enzyme CYP144A1 and CYP121A1, a characterized enzyme that is important for Mtb viability, provides a case study illustrating the subsequent identification of novel CYP144A1 ligands. The different binding modes of these compounds to CYP144A1 provide insight into structural and dynamic aspects of the enzyme, possible biological function, and provide the opportunity to develop inhibitors. Expanding this fragment profiling approach to include a greater number of functionally characterized and orphan proteins may provide a valuable resource for understanding enzyme-ligand interactions.


Asunto(s)
Proteínas Bacterianas/química , Inhibidores Enzimáticos del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/química , Mycobacterium tuberculosis/química , Filogenia , Proteínas Recombinantes/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Biología Computacional , Inhibidores Enzimáticos del Citocromo P-450/clasificación , Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Ligandos , Modelos Moleculares , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/enzimología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína
12.
J Biol Chem ; 292(4): 1310-1329, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-27932461

RESUMEN

The Mycobacterium tuberculosis H37Rv genome encodes 20 cytochromes P450, including P450s crucial to infection and bacterial viability. Many M. tuberculosis P450s remain uncharacterized, suggesting that their further analysis may provide new insights into M. tuberculosis metabolic processes and new targets for drug discovery. CYP126A1 is representative of a P450 family widely distributed in mycobacteria and other bacteria. Here we explore the biochemical and structural properties of CYP126A1, including its interactions with new chemical ligands. A survey of azole antifungal drugs showed that CYP126A1 is inhibited strongly by azoles containing an imidazole ring but not by those tested containing a triazole ring. To further explore the molecular preferences of CYP126A1 and search for probes of enzyme function, we conducted a high throughput screen. Compounds containing three or more ring structures dominated the screening hits, including nitroaromatic compounds that induce substrate-like shifts in the heme spectrum of CYP126A1. Spectroelectrochemical measurements revealed a 155-mV increase in heme iron potential when bound to one of the newly identified nitroaromatic drugs. CYP126A1 dimers were observed in crystal structures of ligand-free CYP126A1 and for CYP126A1 bound to compounds discovered in the screen. However, ketoconazole binds in an orientation that disrupts the BC-loop regions at the P450 dimer interface and results in a CYP126A1 monomeric crystal form. Structural data also reveal that nitroaromatic ligands "moonlight" as substrates by displacing the CYP126A1 distal water but inhibit enzyme activity. The relatively polar active site of CYP126A1 distinguishes it from its most closely related sterol-binding P450s in M. tuberculosis, suggesting that further investigations will reveal its diverse substrate selectivity.


Asunto(s)
Antifúngicos/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Inhibidores Enzimáticos del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/química , Cetoconazol/química , Mycobacterium tuberculosis/enzimología , Dominio Catalítico , Sistema Enzimático del Citocromo P-450/genética , Mycobacterium tuberculosis/genética , Estructura Secundaria de Proteína
13.
ChemMedChem ; 11(17): 1924-35, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27432475

RESUMEN

The cyclo-dipeptide substrates of the essential M. tuberculosis (Mtb) enzyme CYP121 were deconstructed into their component fragments and screened against the enzyme. A number of hits were identified, one of which exhibited an unexpected inhibitor-like binding mode. The inhibitory pharmacophore was elucidated, and fragment binding affinity was rapidly improved by synthetic elaboration guided by the structures of CYP121 substrates. The resulting inhibitors have low micromolar affinity, good predicted physicochemical properties and selectivity for CYP121 over other Mtb P450s. Spectroscopic characterisation of the inhibitors' binding mode provides insight into the effect of weak nitrogen-donor ligands on the P450 heme, an improved understanding of factors governing CYP121-ligand recognition and speculation into the biological role of the enzyme for Mtb.


Asunto(s)
Antibacterianos/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Dipéptidos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Cristalografía por Rayos X , Dipéptidos/síntesis química , Dipéptidos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Molecular , Mycobacterium tuberculosis/enzimología , Relación Estructura-Actividad
14.
Bioorg Med Chem Lett ; 26(15): 3735-40, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27287372

RESUMEN

The search for new scaffolds to complement current HTS and fragment libraries is an active area of research. The development of novel strategies to synthesise compounds with 3D character in order to expand the diversity of a fragment library was explored. A range of substituted bicyclo[2,2,1]spirooxindoles were synthesised using a Diels-Alder [4+2] cycloaddition reaction. Both diastereoisomers were isolated from the reactions and these 3D fragment scaffolds were screened against the cytochrome P450 enzyme CYP121 from Mycobacterium tuberculosis. A number of hits were identified to bind to CYP121 and were shown to exhibit Type I binding interactions with the heme group.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Indoles/farmacología , Mycobacterium tuberculosis/enzimología , Compuestos de Espiro/farmacología , Inhibidores Enzimáticos del Citocromo P-450/síntesis química , Inhibidores Enzimáticos del Citocromo P-450/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Indoles/síntesis química , Indoles/química , Estructura Molecular , Oxindoles , Compuestos de Espiro/síntesis química , Compuestos de Espiro/química , Relación Estructura-Actividad
15.
Sci Rep ; 6: 26628, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27225995

RESUMEN

Mycobacterium tuberculosis (Mtb) causes the disease tuberculosis (TB). The virulent Mtb H37Rv strain encodes 20 cytochrome P450 (CYP) enzymes, many of which are implicated in Mtb survival and pathogenicity in the human host. Bioinformatics analysis revealed that CYP144A1 is retained exclusively within the Mycobacterium genus, particularly in species causing human and animal disease. Transcriptomic annotation revealed two possible CYP144A1 start codons, leading to expression of (i) a "full-length" 434 amino acid version (CYP144A1-FLV) and (ii) a "truncated" 404 amino acid version (CYP144A1-TRV). Computational analysis predicted that the extended N-terminal region of CYP144A1-FLV is largely unstructured. CYP144A1 FLV and TRV forms were purified in heme-bound states. Mass spectrometry confirmed production of intact, His6-tagged forms of CYP144A1-FLV and -TRV, with EPR demonstrating cysteine thiolate coordination of heme iron in both cases. Hydrodynamic analysis indicated that both CYP144A1 forms are monomeric. CYP144A1-TRV was crystallized and the first structure of a CYP144 family P450 protein determined. CYP144A1-TRV has an open structure primed for substrate binding, with a large active site cavity. Our data provide the first evidence that Mtb produces two different forms of CYP144A1 from alternative transcripts, with CYP144A1-TRV generated from a leaderless transcript lacking a 5'-untranslated region and Shine-Dalgarno ribosome binding site.


Asunto(s)
Proteínas Bacterianas , Sistema Enzimático del Citocromo P-450 , Mycobacterium tuberculosis , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Espectrometría de Masas , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Dominios Proteicos
16.
J Med Chem ; 59(7): 3272-302, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27002486

RESUMEN

The essential enzyme CYP121 is a target for drug development against antibiotic resistant strains of Mycobacterium tuberculosis. A triazol-1-yl phenol fragment 1 was identified to bind to CYP121 using a cascade of biophysical assays. Synthetic merging and optimization of 1 produced a 100-fold improvement in binding affinity, yielding lead compound 2 (KD = 15 µM). Deconstruction of 2 into its component retrofragments allowed the group efficiency of structural motifs to be assessed, the identification of more LE scaffolds for optimization and highlighted binding affinity hotspots. Structure-guided addition of a metal-binding pharmacophore onto LE retrofragment scaffolds produced low nanomolar (KD = 15 nM) CYP121 ligands. Elaboration of these compounds to target binding hotspots in the distal active site afforded compounds with excellent selectivity against human drug-metabolizing P450s. Analysis of the factors governing ligand potency and selectivity using X-ray crystallography, UV-vis spectroscopy, and native mass spectrometry provides insight for subsequent drug development.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Sistema Enzimático del Citocromo P-450/química , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Humanos , Ligandos , Mycobacterium tuberculosis/enzimología , Unión Proteica , Estructura Terciaria de Proteína , Tuberculosis/microbiología
17.
Eur J Med Chem ; 95: 29-34, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25791676

RESUMEN

LRRK2IN1 is a highly potent inhibitor of leucine-rich repeat kinase 2 (LRRK2, IC50 = 7.9 nM), an established target for treatment of Parkinson's disease. Two LRRK2IN1 analogues 1 and 2 were synthesised which retained LRRK2 inhibitory activity (1: IC50 = 72 nM; 2: IC50 = 51 nM), were predicted to have improved bioavailability and were efficacious in cell-based models of neuroinflammation. Analogue 1 inhibited IL-6 secretion from LPS-stimulated primary human microglia with EC50 = 4.26 µM. In order to further optimize the molecular properties of LRRK2IN1, a library of truncated analogues was designed based on docking studies. Despite lacking LRRK2 inhibitory activity, these compounds show anti-neuroinflammatory efficacy at micromolar concentration. The compounds developed were valuable tools in establishing a cell-based assay for assessing anti-neuroinflammatory efficacy of LRRK2 inhibitors. Herein, we present data that IL-1ß stimulated U87 glioma cell line is a reliable model for neuroinflammation, as data obtained in this model were consistent with results obtained using primary human microglia and astrocytes.


Asunto(s)
Antiinflamatorios/farmacología , Benzodiazepinonas/farmacología , Glioma/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Microglía/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirimidinas/farmacología , Antiinflamatorios/química , Benzodiazepinonas/química , Células Cultivadas , Glioma/enzimología , Glioma/patología , Humanos , Inflamación/enzimología , Inflamación/patología , Interleucina-1beta/farmacología , Interleucina-6/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Microglía/citología , Microglía/enzimología , Modelos Biológicos , Pirimidinas/química
18.
Bioorg Med Chem Lett ; 23(13): 3690-6, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23721803

RESUMEN

Mutations in PARK8/LRRK2 are the most common genetic cause of Parkinson's disease. Inhibition of LRRK2 kinase activity has neuroprotective benefits, and provides a means of addressing the underlying biochemical cause of Parkinson's disease for the first time. Initial attempts to develop LRRK2 inhibitors were largely unsuccessful and highlight shortcomings intrinsic to traditional, high throughput screening methods of lead discovery. Recently, amino-pyrimidine GNE-7915 was reported as a potent (IC50=9 nM) selective (1/187 kinases), brain-penetrant and non-toxic inhibitor of LRRK2. The use of in silico modelling, extensive in vitro assays and resource-efficient in vivo techniques to produce GNE-7915, reflects a trend towards the concerted optimisation of potency, selectivity and pharmacokinetic properties in early-stage drug development.


Asunto(s)
Fármacos del Sistema Nervioso Central/farmacología , Sistema Nervioso Central/efectos de los fármacos , Morfolinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirimidinas/farmacología , Sistema Nervioso Central/enzimología , Fármacos del Sistema Nervioso Central/química , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Estructura Molecular , Morfolinas/química , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Pirimidinas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA