Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957923

RESUMEN

We present the first long-read de novo assembly and annotation of the luna moth (Actias luna) and provide the full characterization of heavy chain fibroin (h-fibroin), a long and highly repetitive gene (>20 kb) essential in silk fiber production. There are >160,000 described species of moths and butterflies (Lepidoptera), but only within the last 5 years have we begun to recover high-quality annotated whole genomes across the order that capture h-fibroin. Using PacBio HiFi reads, we produce the first high-quality long-read reference genome for this species. The assembled genome has a length of 532 Mb, a contig N50 of 16.8 Mb, an L50 of 14 contigs, and 99.4% completeness (BUSCO). Our annotation using Bombyx mori protein and A. luna RNAseq evidence captured a total of 20,866 genes at 98.9% completeness with 10,267 functionally annotated proteins and a full-length h-fibroin annotation of 2,679 amino acid residues.


Asunto(s)
Fibroínas , Genoma de los Insectos , Anotación de Secuencia Molecular , Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Fibroínas/genética , Seda/genética , Proteínas de Insectos/genética , Bombyx/genética , Secuencias Repetitivas de Ácidos Nucleicos
2.
Proc Biol Sci ; 291(2026): 20240514, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38955232

RESUMEN

Caddisflies (Trichoptera) are among the most diverse groups of freshwater animals with more than 16 000 described species. They play a fundamental role in freshwater ecology and environmental engineering in streams, rivers and lakes. Because of this, they are frequently used as indicator organisms in biomonitoring programmes. Despite their importance, key questions concerning the evolutionary history of caddisflies, such as the timing and origin of larval case making, remain unanswered owing to the lack of a well-resolved phylogeny. Here, we estimated a phylogenetic tree using a combination of transcriptomes and targeted enrichment data for 207 species, representing 48 of 52 extant families and 174 genera. We calibrated and dated the tree with 33 carefully selected fossils. The first caddisflies originated approximately 295 million years ago in the Permian, and major suborders began to diversify in the Triassic. Furthermore, we show that portable case making evolved in three separate lineages, and shifts in diversification occurred in concert with key evolutionary innovations beyond case making.


Asunto(s)
Evolución Biológica , Fósiles , Insectos , Filogenia , Animales , Insectos/genética , Transcriptoma
3.
PeerJ ; 12: e17365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827314

RESUMEN

The saturniid moth genus Automeris includes 145 described species. Their geographic distribution ranges from the eastern half of North America to as far south as Peru. Automeris moths are cryptically colored, with forewings that resemble dead leaves, and conspicuously colored, elaborate eyespots hidden on their hindwings. Despite their charismatic nature, the evolutionary history and relationships within Automeris and between closely related genera, remain poorly understood. In this study, we present the most comprehensive phylogeny of Automeris to date, including 80 of the 145 described species. We also incorporate two morphologically similar hemileucine genera, Pseudautomeris and Leucanella, as well as a morphologically distinct genus, Molippa. We obtained DNA data from both dry-pinned and ethanol-stored museum specimens and conducted Anchored Hybrid Enrichment (AHE) sequencing to assemble a high-quality dataset for phylogenetic analysis. The resulting phylogeny supports Automeris as a paraphyletic genus, with Leucanella and Pseudautomeris nested within, with the most recent common ancestor dating back to 21 mya. This study lays the foundation for future research on various aspects of Automeris biology, including geographical distribution patterns, potential drivers of speciation, and ecological adaptations such as antipredator defense mechanisms.


Asunto(s)
Mariposas Nocturnas , Filogenia , Animales , Mariposas Nocturnas/genética , Mariposas Nocturnas/clasificación , Mariposas Nocturnas/anatomía & histología , Evolución Biológica
4.
G3 (Bethesda) ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722626

RESUMEN

While most species of butterflies and moths (Lepidoptera) have entirely terrestrial life histories, ∼0.5% of the described species are known to have an aquatic larval stage. Larvae of aquatic Lepidoptera are similar to caddisflies (Trichoptera) in that they use silk to anchor themselves to underwater substrates or to build protective cases. However, the physical properties and genetic elements of silks in aquatic Lepidoptera remain unstudied, as most research on lepidopteran silk has focused on the commercially important silkworm, Bombyx mori. Here, we provide high-quality PacBio HiFi genome assemblies of two distantly-related aquatic Lepidoptera species (Elophila obliteralis (Pyraloidea: Crambidae) and Hyposmocoma kahamanoa (Gelechioidea: Cosmopterigidae)). As a step toward understanding the evolution of underwater silk in aquatic Lepidoptera, we used our two genome assemblies and compared them to published genetic data of aquatic and terrestrial Lepidoptera. Sequences of the primary silk protein, h-fibroin in aquatic moths have conserved termini and share a basic motif structure with terrestrial Lepidoptera. However, these sequences were similar to aquatic Trichoptera in that the percentage of positively and negatively charged amino acids was much higher than in terrestrial Lepidoptera, indicating a possible adaptation of silks to aquatic environments.

5.
Biol Lett ; 20(5): 20230610, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747686

RESUMEN

Echolocating bats and their eared insect prey are in an acoustic evolutionary war. Moths produce anti-bat sounds that startle bat predators, signal noxiousness, mimic unpalatable models and jam bat sonar. Tiger beetles (Cicindelidae) also purportedly produce ultrasound in response to bat attacks. Here we tested 19 tiger beetle species from seven genera and showed that they produce anti-bat signals to playback of authentic bat echolocation. The dominant frequency of beetle sounds substantially overlaps the sonar calls of sympatric bats. As tiger beetles are known to produce defensive chemicals such as benzaldehyde and hydrogen cyanide, we hypothesized that tiger beetle sounds are acoustically advertising their unpalatability. We presented captive big brown bats (Eptesicus fuscus) with seven different tiger beetle species and found that 90 out of 94 beetles were completely consumed, indicating that these tiger beetle species are not aposematically signalling. Instead, we show that the primary temporal and spectral characteristics of beetle warning sounds overlap with sympatric unpalatable tiger moth (Arctinae) sounds and that tiger beetles are probably Batesian mimics of noxious moth models. We predict that many insect taxa produce anti-bat sounds and that the acoustic mimicry rings of the night sky are hyperdiverse.


Asunto(s)
Quirópteros , Escarabajos , Ecolocación , Mariposas Nocturnas , Animales , Mariposas Nocturnas/fisiología , Quirópteros/fisiología , Escarabajos/fisiología , Conducta Predatoria , Mimetismo Biológico
6.
iScience ; 27(4): 109336, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500827

RESUMEN

Temperature is thought to be a key factor influencing global species richness patterns. We investigate the link between temperature and diversification in the butterfly family Pieridae by combining next generation DNA sequences and published molecular data with fine-grained distribution data. We sampled nearly 600 pierid butterfly species to infer the most comprehensive molecular phylogeny of the family and curated a distribution dataset of more than 800,000 occurrences. We found strong evidence that species in environments with more stable daily temperatures or cooler maximum temperatures in the warm seasons have higher speciation rates. Furthermore, speciation and extinction rates decreased in tandem with global temperatures through geological time, resulting in a constant net diversification.

7.
Glob Chang Biol ; 30(3): e17241, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38525809

RESUMEN

Recent work has shown the decline of insect abundance, diversity and biomass, with potential implications for ecosystem services. These declines are especially pronounced in regions with high human activity, and urbanization is emerging as a significant contributing factor. However, the scale of these declines and the traits that determine variation in species-specific responses remain less well understood, especially in subtropical and tropical regions, where insect diversity is high and urban footprints are rapidly expanding. Here, we surveyed moths across an entire year in protected forested sites across an urbanization gradient to test how caterpillar and adult life stages of subtropical moths (Lepidoptera) are impacted by urbanization. Specifically, we assess how urban development affects the total biomass of caterpillars, abundance of adult moths and quantify how richness and phylogenetic diversity of macro-moths are impacted by urban development. Additionally, we explore how life-history traits condition species' responses to urban development. At the community level, we find that urban development decreases caterpillar biomass and adult moth abundance. We also find sharp declines of adult macro-moths in response to urban development across the phylogeny, leading to a decrease in species richness and phylogenetic diversity in more urban sites. Finally, our study found that smaller macro-moths are less impacted by urban development than larger macro-moths in subtropical environments, perhaps highlighting the tradeoffs of metabolic costs of urban heat favoring smaller moths over the relative benefits of dispersal for larger moths. In summary, our research underscores the far-reaching consequences of urbanization on moths and provides compelling evidence that urban forests alone may not be sufficient to safeguard biodiversity in cities.


Asunto(s)
Ecosistema , Mariposas Nocturnas , Animales , Humanos , Urbanización , Larva , Filogenia , Biodiversidad , Insectos
8.
G3 (Bethesda) ; 14(3)2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38324397

RESUMEN

Automeris moths are a morphologically diverse group with 135 described species that have a geographic range that spans from the New World temperate zone to the Neotropics. Many Automeris have elaborate hindwing eyespots that are thought to deter or disrupt the attack of potential predators, allowing the moth time to escape. The Io moth (Automeris io), known for its striking eyespots, is a well-studied species within the genus and is an emerging model system to study the evolution of deimatism. Existing research on the eyespot pattern development will be augmented by genomic resources that allow experimental manipulation of this emerging model. Here, we present a high-quality, PacBio HiFi genome assembly for Io moth to aid existing research on the molecular development of eyespots and future research on other deimatic traits. This 490 Mb assembly is highly contiguous (N50 = 15.78 mbs) and complete (benchmarking universal single-copy orthologs = 98.4%). Additionally, we were able to recover orthologs of genes previously identified as being involved in wing pattern formation and movement.


Asunto(s)
Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Genoma , Genómica
9.
Mol Phylogenet Evol ; 194: 108022, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38325534

RESUMEN

The world's largest butterfly genus Delias, commonly known as Jezebels, comprises ca. 251 species found throughout Asia, Australia, and Melanesia. Most species are endemic to islands in the Indo-Australian Archipelago or to New Guinea and nearby islands in Melanesia, and many species are restricted to montane habitats over 1200 m. We inferred an extensively sampled and well-supported molecular phylogeny of the group to better understand the spatial and temporal dimensions of its diversification. The remarkable diversity of Delias evolved in just ca. 15-16 Myr (crown age). The most recent common ancestor of a clade with most of the species dispersed out of New Guinea ca. 14 Mya, but at least six subsequently diverging lineages dispersed back to the island. Diversification was associated with frequent dispersal of lineages among the islands of the Indo-Australian Archipelago, and the divergence of sister taxa on a single landmass was rare and occurred only on the largest islands, most notably on New Guinea. We conclude that frequent inter-island dispersal during the Neogene-likely facilitated by frequent sea level change-sparked much diversification during that period. Many extant New Guinea lineages started diversifying 5 Mya, suggesting that orogeny facilitated their diversification. Our results largely agree with the most recently proposed species group classification system, and we use our large taxon sample to extend this system to all described species. Finally, we summarize recent insights to speculate how wing pattern evolution, mimicry, and sexual selection might also contribute to these butterflies' rapid speciation and diversification.


Asunto(s)
Mariposas Diurnas , Animales , Filogenia , Mariposas Diurnas/genética , Nueva Guinea , Australia , Ecosistema
10.
Gigascience ; 132024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165153

RESUMEN

BACKGROUND: Understanding the genotype of pest species provides an important baseline for designing integrated pest management (IPM) strategies. Recently developed long-read sequence technologies make it possible to compare genomic features of nonmodel pest species to disclose the evolutionary path underlying the pest species profiles. Here we sequenced and assembled genomes for 3 agricultural pest gelechiid moths: Phthorimaea absoluta (tomato leafminer), Keiferia lycopersicella (tomato pinworm), and Scrobipalpa atriplicella (goosefoot groundling moth). We also compared genomes of tomato leafminer and tomato pinworm with published genomes of Phthorimaea operculella and Pectinophora gossypiella to investigate the gene family evolution related to the pest species profiles. RESULTS: We found that the 3 solanaceous feeding species, P. absoluta, K. lycopersicella, and P. operculella, are clustered together. Gene family evolution analyses with the 4 species show clear gene family expansions on host plant-associated genes for the 3 solanaceous feeding species. These genes are involved in host compound sensing (e.g., gustatory receptors), detoxification (e.g., ABC transporter C family, cytochrome P450, glucose-methanol-choline oxidoreductase, insect cuticle proteins, and UDP-glucuronosyl), and digestion (e.g., serine proteases and peptidase family S1). A gene ontology enrichment analysis of rapid evolving genes also suggests enriched functions in host sensing and immunity. CONCLUSIONS: Our results of family evolution analyses indicate that host plant adaptation and pathogen defense could be important drivers in species diversification among gelechiid moths.


Asunto(s)
Mariposas Nocturnas , Solanum lycopersicum , Animales , Mariposas Nocturnas/genética , Adaptación al Huésped , Control de Plagas , Genómica
11.
Cladistics ; 40(1): 21-33, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37787424

RESUMEN

The owlet moths (Noctuoidea; ~43-45K described species) are one of the most ecologically diverse and speciose superfamilies of animals. Moreover, they comprise some of the world's most notorious pests of agriculture and forestry. Despite their contributions to terrestrial biodiversity and impacts on ecosystems and economies, the evolutionary history of Noctuoidea remains unclear because the superfamily lacks a statistically robust phylogenetic and temporal framework. We reconstructed the phylogeny of Noctuoidea using data from 1234 genes (946.4 kb nucleotides) obtained from the genome and transcriptome sequences of 76 species. The relationships among the six families of Noctuoidea were well resolved and consistently recovered based on both concatenation and gene coalescence approaches, supporting the following relationships: Oenosandridae + (Notodontidae + (Erebidae + (Nolidae + (Euteliidae + Noctuidae)))). A Yule tree prior with three unlinked molecular clocks was identified as the preferred BEAST analysis using marginal-likelihood estimations. The crown age of Noctuoidea was estimated at 74.5 Ma, with most families originating before the end of the Paleogene (23 Ma). Our study provides the first statistically robust phylogenetic and temporal framework for Noctuoidea, including all families of owlet moths, based on large-scale genomic data.


Asunto(s)
Genoma Mitocondrial , Mariposas Nocturnas , Animales , Filogenia , Ecosistema , Mariposas Nocturnas/genética , Genómica
12.
Mol Ecol Resour ; 24(1): e13881, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37888995

RESUMEN

Rapid identification of organisms is essential for many biological and medical disciplines, from understanding basic ecosystem processes, disease diagnosis, to the detection of invasive pests. CRISPR-based diagnostics offers a novel and rapid alternative to other identification methods and can revolutionize our ability to detect organisms with high accuracy. Here we describe a CRISPR-based diagnostic developed with the universal cytochrome-oxidase 1 gene (CO1). The CO1 gene is the most sequenced gene among Animalia, and therefore our approach can be adopted to detect nearly any animal. We tested the approach on three difficult-to-identify moth species (Keiferia lycopersicella, Phthorimaea absoluta and Scrobipalpa atriplicella) that are major invasive pests globally. We designed an assay that combines recombinase polymerase amplification (RPA) with CRISPR for signal generation. Our approach has a much higher sensitivity than real-time PCR assays and achieved 100% accuracy for identification of all three species, with a detection limit of up to 120 fM for P. absoluta and 400 fM for the other two species. Our approach does not require a sophisticated laboratory, reduces the risk of cross-contamination, and can be completed in less than 1 h. This work serves as a proof of concept that has the potential to revolutionize animal detection and monitoring.


Asunto(s)
Ecosistema , Lepidópteros , Animales , Insectos , Bioensayo , Complejo IV de Transporte de Electrones/genética
13.
Wellcome Open Res ; 8: 75, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600586

RESUMEN

We present a genome assembly from an individual female Ochlodes sylvanus, the Large Skipper (Arthropoda; Insecta; Lepidoptera; Hesperiidae). The genome sequence is 380 megabases in span. Most of the assembly (99.97%) is scaffolded into 30 chromosomal pseudomolecules, including the assembled W and Z sex chromosomes. The mitochondrial genome has also been assembled and is 17.1 kilobases in length. Gene annotation of this assembly on Ensembl identified 13,451 protein coding genes.

14.
PeerJ ; 11: e15389, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377786

RESUMEN

Predators and prey exist in persistent conflict that often hinges on deception-the transmission of misleading or manipulative signals-as a means for survival. Deceptive traits are widespread across taxa and sensory systems, representing an evolutionarily successful and common strategy. Moreover, the highly conserved nature of the major sensory systems often extends these traits past single species predator-prey interactions toward a broader set of perceivers. As such, deceptive traits can provide a unique window into the capabilities, constraints and commonalities across divergent and phylogenetically-related perceivers. Researchers have studied deceptive traits for centuries, but a unified framework for categorizing different types of post-detection deception in predator-prey conflict still holds potential to inform future research. We suggest that deceptive traits can be distinguished by their effect on object formation processes. Perceptual objects are composed of physical attributes (what) and spatial (where) information. Deceptive traits that operate after object formation can therefore influence the perception and processing of either or both of these axes. We build upon previous work using a perceiver perspective approach to delineate deceptive traits by whether they closely match the sensory information of another object or create a discrepancy between perception and reality by exploiting the sensory shortcuts and perceptual biases of their perceiver. We then further divide this second category, sensory illusions, into traits that distort object characteristics along either the what or where axes, and those that create the perception of whole novel objects, integrating the what/where axes. Using predator-prey examples, we detail each step in this framework and propose future avenues for research. We suggest that this framework will help organize the many forms of deceptive traits and help generate predictions about selective forces that have driven animal form and behavior across evolutionary time.


Asunto(s)
Decepción , Conducta Predatoria , Animales
15.
bioRxiv ; 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37292907

RESUMEN

Rapid identification of organisms is essential across many biological and medical disciplines, from understanding basic ecosystem processes and how organisms respond to environmental change, to disease diagnosis and detection of invasive pests. CRISPR-based diagnostics offers a novel and rapid alternative to other identification methods and can revolutionize our ability to detect organisms with high accuracy. Here we describe a CRISPR-based diagnostic developed with the universal cytochrome-oxidase 1 gene (CO1). The CO1 gene is the most sequenced gene among Animalia, and therefore our approach can be adopted to detect nearly any animal. We tested the approach on three difficult-to-identify moth species (Keiferia lycopersicella, Phthorimaea absoluta, and Scrobipalpa atriplicella) that are major invasive pests globally. We designed an assay that combines recombinase polymerase amplification (RPA) with CRISPR for signal generation. Our approach has a much higher sensitivity than other real time-PCR assays and achieved 100% accuracy for identification of all three species, with a detection limit of up to 120 fM for P. absoluta and 400 fM for the other two species. Our approach does not require a lab setting, reduces the risk of cross-contamination, and can be completed in less than one hour. This work serves as a proof of concept that has the potential to revolutionize animal detection and monitoring.

16.
Nat Ecol Evol ; 7(6): 903-913, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37188966

RESUMEN

Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants.


Asunto(s)
Mariposas Diurnas , Filogenia , Animales , Evolución Biológica , Mariposas Diurnas/genética
17.
Proc Natl Acad Sci U S A ; 120(18): e2221528120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37094147

RESUMEN

Arthropod silk is vital to the evolutionary success of hundreds of thousands of species. The primary proteins in silks are often encoded by long, repetitive gene sequences. Until recently, sequencing and assembling these complex gene sequences has proven intractable given their repetitive structure. Here, using high-quality long-read sequencing, we show that there is extensive variation-both in terms of length and repeat motif order-between alleles of silk genes within individual arthropods. Further, this variation exists across two deep, independent origins of silk which diverged more than 500 Mya: the insect clade containing caddisflies and butterflies and spiders. This remarkable convergence in previously overlooked patterns of allelic variation across multiple origins of silk suggests common mechanisms for the generation and maintenance of structural protein-coding genes. Future genomic efforts to connect genotypes to phenotypes should account for such allelic variation.


Asunto(s)
Mariposas Diurnas , Fibroínas , Arañas , Animales , Seda/química , Secuencia de Aminoácidos , Fibroínas/química , Alelos , Insectos/genética , Mariposas Diurnas/genética , Variación Genética , Arañas/genética , Proteínas de Insectos/genética , Filogenia
18.
G3 (Bethesda) ; 13(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37119801

RESUMEN

The sphinx moth genus Hyles comprises 29 described species inhabiting all continents except Antarctica. The genus diverged relatively recently (40-25 MYA), arising in the Americas and rapidly establishing a cosmopolitan distribution. The whitelined sphinx moth, Hyles lineata, represents the oldest extant lineage of this group and is one of the most widespread and abundant sphinx moths in North America. Hyles lineata exhibits the large body size and adept flight control characteristic of the sphinx moth family (Sphingidae), but it is unique in displaying extreme larval color variation and broad host plant use. These traits, in combination with its broad distribution and high relative abundance within its range, have made H. lineata a model organism for studying phenotypic plasticity, plant-herbivore interactions, physiological ecology, and flight control. Despite being one of the most well-studied sphinx moths, little data exist on genetic variation or regulation of gene expression. Here, we report a high-quality genome showing high contiguity (N50 of 14.2 Mb) and completeness (98.2% of Lepidoptera BUSCO genes), an important first characterization to facilitate such studies. We also annotate the core melanin synthesis pathway genes and confirm that they have high sequence conservation with other moths and are most similar to those of another, well-characterized sphinx moth, the tobacco hornworm (Manduca sexta).


Asunto(s)
Melaninas , Mariposas Nocturnas , Animales , Melaninas/genética , Larva/genética , Larva/metabolismo , Genoma , Metabolismo Secundario
19.
PeerJ ; 11: e14948, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36915657

RESUMEN

Mezcals are distilled Mexican alcoholic beverages consumed by many people across the globe. One of the most popular mezcals is tequila, but there are other forms of mezcal whose production has been part of Mexican culture since the 17th century. It was not until the 1940-50s when the mezcal worm, also known as the "tequila worm", was placed inside bottles of non-tequila mezcal before distribution. These bottled larvae increased public attention for mezcal, especially in Asia, Europe, and the United States. Despite these larvae gaining global interest, their identity has largely remained uncertain other than that they are larvae of one of three distantly related holometabolous insects. We sequenced the COI gene from larvae in different kinds of commercially available mezcals. All larval DNA that amplified was identified as the agave redworm moth, Comadia redtenbacheri. Those that did not amplify were also confirmed morphologically to be the larva of this species.


Asunto(s)
Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Bebidas Alcohólicas/análisis , Larva/genética , ADN/genética , Secuencia de Bases
20.
Sci Adv ; 9(12): eabq3713, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947619

RESUMEN

Understanding the evolutionary origins and factors maintaining alternative life history strategies (ALHS) within species is a major goal of evolutionary research. While alternative alleles causing discrete ALHS are expected to purge or fix over time, one-third of the ~90 species of Colias butterflies are polymorphic for a female-limited ALHS called Alba. Whether Alba arose once, evolved in parallel, or has been exchanged among taxa is currently unknown. Using comparative genome-wide association study (GWAS) and population genomic analyses, we placed the genetic basis of Alba in time-calibrated phylogenomic framework, revealing that Alba evolved once near the base of the genus and has been subsequently maintained via introgression and balancing selection. CRISPR-Cas9 mutagenesis was then used to verify a putative cis-regulatory region of Alba, which we identified using phylogenetic foot printing. We hypothesize that this cis-regulatory region acts as a modular enhancer for the induction of the Alba ALHS, which has likely facilitated its long evolutionary persistence.


Asunto(s)
Mariposas Diurnas , Rasgos de la Historia de Vida , Animales , Femenino , Filogenia , Mariposas Diurnas/genética , Estudio de Asociación del Genoma Completo , Evolución Biológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...