Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Breed Sci ; 71(3): 344-353, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34776741

RESUMEN

Lisianthus (Eustoma grandiflorum) is an important floricultural crop cultivated worldwide. Despite its commercial importance, few DNA markers are available for molecular genetic research. In this study, we constructed a genetic linkage map and to detect quantitative trait loci (QTLs) for important agronomic traits of lisianthus. To develop simple sequence repeat (SSR) markers, we used 454-pyrosequencing technology to obtain genomic shotgun sequences and subsequently identified 8263 putative SSRs. A total of 3990 primer pairs were designed in silico and 1189 unique primer pairs were extracted through a BLAST search. Amplification was successful for more than 1000 primer pairs, and ultimately 278 SSR markers exhibited polymorphism between the two lisianthus accessions evaluated. Based on these markers, a genetic linkage map was constructed using a breeding population derived from crosses between the two accessions, for which flowering time differed (>140 days when grown under 20°C). We detected one QTL associated with flowering time (phenotypic variance, 27%; LOD value, 3.7). The SSR marker located at this QTL may account for variation in flowering time among accessions (i.e., three accessions whose nodes of the first flower were over 30 had late-flowering alleles of this QTL).

2.
Plant J ; 69(1): 168-80, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21910771

RESUMEN

The temporal and spatial control of meristem identity is a key element in plant development. To better understand the molecular mechanisms that regulate inflorescence and flower architecture, we characterized the rice aberrant panicle organization 2 (apo2) mutant which exhibits small panicles with reduced number of primary branches due to the precocious formation of spikelet meristems. The apo2 mutants also display a shortened plastochron in the vegetative phase, late flowering, aberrant floral organ identities and loss of floral meristem determinacy. Map-based cloning revealed that APO2 is identical to previously reported RFL gene, the rice ortholog of the Arabidopsis LEAFY (LFY) gene. Further analysis indicated that APO2/RFL and APO1, the rice ortholog of Arabidopsis UNUSUAL FLORAL ORGANS, act cooperatively to control inflorescence and flower development. The present study revealed functional differences between APO2/RFL and LFY. In particular, APO2/RFL and LFY act oppositely on inflorescence development. Therefore, the genetic mechanisms for controlling inflorescence architecture have evolutionarily diverged between rice (monocots) and Arabidopsis (eudicots).


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Meristema/crecimiento & desarrollo , Meristema/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Clonación Molecular , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Inflorescencia , Mutación , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente
3.
Plant Physiol ; 157(3): 1128-37, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21880933

RESUMEN

Phytochromes mediate the photoperiodic control of flowering in rice (Oryza sativa), a short-day plant. Recent molecular genetics studies have revealed a genetic network that enables the critical daylength response of florigen gene expression. Analyses using a rice phytochrome chromophore-deficient mutant, photoperiod sensitivity5, have so far revealed that within this network, phytochromes are required for expression of Grain number, plant height and heading date7 (Ghd7), a floral repressor gene in rice. There are three phytochrome genes in rice, but the roles of each phytochrome family member in daylength response have not previously been defined. Here, we revealed multiple action points for each phytochrome in the critical daylength response of florigen expression by using single and double phytochrome mutant lines of rice. Our results show that either phyA alone or a genetic combination of phyB and phyC can induce Ghd7 mRNA, whereas phyB alone causes some reduction in levels of Ghd7 mRNA. Moreover, phyB and phyA can affect Ghd7 activity and Early heading date1 (a floral inducer) activity in the network, respectively. Therefore, each phytochrome gene of rice has distinct roles, and all of the phytochrome actions coordinately control the critical daylength response of florigen expression in rice.


Asunto(s)
Flores/genética , Flores/fisiología , Oryza/genética , Oryza/fisiología , Fotoperiodo , Fitocromo/metabolismo , Proteínas de Plantas/metabolismo , Relojes Circadianos/genética , Relojes Circadianos/efectos de la radiación , Flores/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Modelos Biológicos , Oryza/efectos de la radiación , Fitocromo/genética , Proteínas de Plantas/genética
4.
Plant Physiol ; 150(2): 736-47, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19386809

RESUMEN

Two types of branches, rachis branches (i.e. nonfloral) and spikelets (i.e. floral), are produced during rice (Oryza sativa) inflorescence development. We previously reported that the ABERRANT PANICLE ORGANIZATION1 (APO1) gene, encoding an F-box-containing protein orthologous to Arabidopsis (Arabidopsis thaliana) UNUSUAL FLORAL ORGANS, suppresses precocious conversion of rachis branch meristems to spikelets to ensure generation of certain number of spikelets. Here, we identified four dominant mutants producing an increased number of spikelets and found that they are gain-of-function alleles of APO1. The APO1 expression levels are elevated in all four mutants, suggesting that an increase of APO1 activity caused the delay in the program shift to spikelet formation. In agreement with this result, ectopic overexpression of APO1 accentuated the APO1 gain-of-function phenotypes. In the apo1-D dominant alleles, the inflorescence meristem starts to increase in size more vigorously than the wild type when switching to the reproductive development phase. This alteration in growth rate is opposite to what is observed with the apo1 mutants that have a smaller inflorescence meristem. The difference in meristem size is caused by different rates of cell proliferation. Collectively, these results suggest that the level of APO1 activity regulates the inflorescence form through control of cell proliferation in the meristem.


Asunto(s)
Flores/citología , Flores/genética , Regulación de la Expresión Génica de las Plantas , Meristema/citología , Oryza/citología , Oryza/genética , Proteínas de Plantas/genética , Secuencia de Bases , Proliferación Celular , Forma de la Célula , Elementos Transponibles de ADN/genética , Genes Dominantes , Genes de Plantas , Meristema/genética , Datos de Secuencia Molecular , Mutagénesis Insercional/genética , Proteínas Mutantes/aislamiento & purificación , Mutación/genética , Fenotipo , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...