Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
NPJ Precis Oncol ; 8(1): 46, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396251

RESUMEN

Brigatinib-based therapy was effective against osimertinib-resistant EGFR C797S mutants and is undergoing clinical studies. However, tumor relapse suggests additional resistance mutations might emerge. Here, we first demonstrated the binding mode of brigatinib to the EGFR-T790M/C797S mutant by crystal structure analysis and predicted brigatinib-resistant mutations through a cell-based assay including N-ethyl-N-nitrosourea (ENU) mutagenesis. We found that clinically reported L718 and G796 compound mutations appeared, consistent with their proximity to the binding site of brigatinib, and brigatinib-resistant quadruple mutants such as EGFR-activating mutation/T790M/C797S/L718M were resistant to all the clinically available EGFR-TKIs. BI-4020, a fourth-generation EGFR inhibitor with a macrocyclic structure, overcomes the quadruple and major EGFR-activating mutants but not the minor mutants, such as L747P or S768I. Molecular dynamics simulation revealed the binding mode and affinity between BI-4020 and EGFR mutants. This study identified potential therapeutic strategies using the new-generation macrocyclic EGFR inhibitor to overcome the emerging ultimate resistance mutants.

2.
Front Oncol ; 12: 953013, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185300

RESUMEN

During the last two decades, kinase inhibitors have become the major drug class for targeted cancer therapy. Although the number of approved kinase inhibitors increases rapidly, comprehensive in vitro profiling and comparison of inhibitor activities is often lacking in the public domain. Here we report the extensive profiling and comparison of 21 kinase inhibitors approved by the FDA for oncology indications since June 2018 and 13 previously approved comparators on panels of 255 biochemical kinase assays and 134 cancer cell line viability assays. Comparison of the cellular inhibition profiles of the EGFR inhibitors gefitinib, dacomitinib, and osimertinib identified the uncommon EGFR p.G719S mutation as a common response marker for EGFR inhibitors. Additionally, the FGFR inhibitors erdafitinib, infigratinib, and pemigatinib potently inhibited the viability of cell lines which harbored oncogenic alterations in FGFR1-3, irrespective of the specific clinical indications of the FGFR inhibitors. These results underscore the utility of in vitro kinase inhibitor profiling in cells for identifying new potential stratification markers for patient selection. Furthermore, comparison of the in vitro inhibition profiles of the RET inhibitors pralsetinib and selpercatinib revealed they had very similar biochemical and cellular selectivity. As an exception, an NTRK3 fusion-positive cell line was potently inhibited by pralsetinib but not by selpercatinib, which could be explained by the targeting of TRK kinases in biochemical assays by pralsetinib but not selpercatinib. This illustrates that unexpected differences in cellular activities between inhibitors that act through the same primary target can be explained by subtle differences in biochemical targeting. Lastly, FLT3-mutant cell lines were responsive to both FLT3 inhibitors gilteritinib and midostaurin, and the PI3K inhibitor duvelisib. Biochemical profiling revealed that the FLT3 and PI3K inhibitors targeted distinct kinases, indicating that unique dependencies can be identified by combined biochemical and cellular profiling of kinase inhibitors. This study provides the first large scale kinase assay or cell panel profiling study for newly approved kinase inhibitors, and shows that comprehensive in vitro profiling of kinase inhibitors can provide rationales for therapy selection and indication expansion of approved kinase inhibitors.

3.
Mol Cancer Ther ; 18(2): 470-481, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30381447

RESUMEN

Kinase inhibitors form the largest class of precision medicine. From 2013 to 2017, 17 have been approved, with 8 different mechanisms. We present a comprehensive profiling study of all 17 inhibitors on a biochemical assay panel of 280 kinases and proliferation assays of 108 cancer cell lines. Drug responses of the cell lines were related to the presence of frequently recurring point mutations, insertions, deletions, and amplifications in 15 well-known oncogenes and tumor-suppressor genes. In addition, drug responses were correlated with basal gene expression levels with a focus on 383 clinically actionable genes. Cell lines harboring actionable mutations defined in the FDA labels, such as mutant BRAF(V600E) for cobimetinib, or ALK gene translocation for ALK inhibitors, are generally 10 times more sensitive compared with wild-type cell lines. This sensitivity window is more narrow for markers that failed to meet endpoints in clinical trials, for instance CDKN2A loss for CDK4/6 inhibitors (2.7-fold) and KRAS mutation for cobimetinib (2.3-fold). Our data underscore the rationale of a number of recently opened clinical trials, such as ibrutinib in ERBB2- or ERBB4-expressing cancers. We propose and validate new response biomarkers, such as mutation in FBXW7 or SMAD4 for EGFR and HER2 inhibitors, ETV4 and ETV5 expression for MEK inhibitors, and JAK3 expression for ALK inhibitors. Potentially, these new markers could be combined to improve response rates. This comprehensive overview of biochemical and cellular selectivities of approved kinase inhibitor drugs provides a rich resource for drug repurposing, basket trial design, and basic cancer research.


Asunto(s)
Neoplasias/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Adenina/análogos & derivados , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Aprobación de Drogas , Reposicionamiento de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Piperidinas , Mutación Puntual , Mapas de Interacción de Proteínas , Pirazoles/farmacología , Pirimidinas/farmacología
4.
J Mol Biol ; 429(4): 574-586, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28043854

RESUMEN

Target residence time (τ) has been suggested to be a better predictor of the biological activity of kinase inhibitors than inhibitory potency (IC50) in enzyme assays. Surface plasmon resonance binding assays for 46 human protein and lipid kinases were developed. The association and dissociation constants of 80 kinase inhibitor interactions were determined. τ and equilibrium affinity constants (KD) were calculated to determine kinetic selectivity. Comparison of τ and KD or IC50 values revealed a strikingly different view on the selectivity of several kinase inhibitors, including the multi-kinase inhibitor ponatinib, which was tested on 10 different kinases. In addition, known pan-Aurora inhibitors resided much longer on Aurora B than on Aurora A, despite having comparable affinity for Aurora A and B. Furthermore, the γ/δ-selective PI3K inhibitor duvelisib and the δ-selective drug idelalisib had similar 20-fold selectivity for δ- over γ-isoform but duvelisib resided much longer on both targets.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Resonancia por Plasmón de Superficie , Animales , Línea Celular , Receptores ErbB/metabolismo , Humanos , Insectos/citología , Insectos/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3
5.
PLoS One ; 9(3): e92146, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24651269

RESUMEN

The anti-proliferative activities of all twenty-five targeted kinase inhibitor drugs that are in clinical use were measured in two large assay panels: (1) a panel of proliferation assays of forty-four human cancer cell lines from diverse tumour tissue origins; and (2) a panel of more than 300 kinase enzyme activity assays. This study provides a head-on comparison of all kinase inhibitor drugs in use (status Nov. 2013), and for six of these drugs, the first kinome profiling data in the public domain. Correlation of drug activities with cancer gene mutations revealed novel drug sensitivity markers, suggesting that cancers dependent on mutant CTNNB1 will respond to trametinib and other MEK inhibitors, and cancers dependent on SMAD4 to small molecule EGFR inhibitor drugs. Comparison of cellular targeting efficacies reveals the most targeted inhibitors for EGFR, ABL1 and BRAF(V600E)-driven cell growth, and demonstrates that the best targeted agents combine high biochemical potency with good selectivity. For ABL1 inhibitors, we computationally deduce optimized kinase profiles for use in a next generation of drugs. Our study shows the power of combining biochemical and cellular profiling data in the evaluation of kinase inhibitor drug action.


Asunto(s)
Marcación de Gen , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Análisis de Varianza , Marcadores Genéticos , Humanos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteoma/metabolismo , Reproducibilidad de los Resultados
7.
J Invest Dermatol ; 121(3): 502-9, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12925208

RESUMEN

Interleukin 18 induces both T helper 1 and T helper 2 cytokines, proinflammatory cytokines, chemokines, and IgE and IgG1 production. A role of interleukin 18 in inflammatory cutaneous reactions is still unclear, however. Here we generated keratin 5/interleukin 18 transgenic mice overexpressing mature murine interleukin 18 in the skin using a human keratin 5 promoter. In the contact hypersensitivity model, trinitrochlorobenzene elicited a stronger ear swelling in keratin 5/interleukin 18 transgenic mice compared with control littermate wild-type or immunoglobulin/interleukin 18 transgenic mice in which mature interleukin 18 was expressed by B and T cells under the control of the immunoglobulin promoter. Application of an irritant, croton oil, induced stronger and more sustained ear swelling in keratin 5/interleukin 18 transgenic mice than in immunoglobulin/interleukin 18 transgenic or wild-type mice. Repetitive topical application (weekly for six consecutive weeks) of trinitrochlorobenzene to their ears also elicited a stronger cutaneous inflammation in keratin 5/interleukin 18 transgenic mice than seen in immunoglobulin/interleukin 18 transgenic or wild-type mice. After these six trinitrochlorobenzene applications, the expression of interferon-gamma, interleukin-4, and CCL20 mRNA in the ear tissue was increased and dermal changes, such as acanthosis and eosinophilic, neutrophilic, and mast cell infiltration, were greater in keratin 5/interleukin 18 transgenic mice than in wild-type mice. Furthermore, the repetitive application elicited a significant increase in serum IgE levels and the number of B cells in the draining lymph node in keratin 5/interleukin 18 transgenic mice. These results suggest that overexpression of interleukin 18 in the skin aggravates allergic and nonallergic cutaneous inflammation, which is accompanied by high expression of T helper 1 and T helper 2 cytokines and chemokines in the skin.


Asunto(s)
Dermatitis Alérgica por Contacto/inmunología , Dermatitis Alérgica por Contacto/fisiopatología , Interleucina-18/genética , Interleucina-18/inmunología , Piel/inmunología , Animales , Linaje de la Célula/inmunología , Quimiocinas/genética , Aceite de Crotón , Citocinas/genética , Dermatitis Alérgica por Contacto/patología , Oído Externo , Femenino , Expresión Génica/inmunología , Irritantes , Queratina-15 , Queratina-5 , Queratinocitos/patología , Queratinocitos/fisiología , Queratinas/genética , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cloruro de Picrilo , Regiones Promotoras Genéticas , ARN Mensajero/análisis , Piel/patología
8.
J Bone Miner Res ; 18(6): 975-83, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12817749

RESUMEN

The in vivo effects of IL-18 on bone metabolism were investigated by histopathology in IL-18 transgenic mice. Deformed cortical bone and decreased turnover rate of lumbar trabecular bone are consistent with increased expression of IFN-gamma and IL-18 in the bone marrow. Interleukin (IL)-18 has been demonstrated to inhibit osteoclastogenesis in an in vitro co-culture system. We investigated the effects of IL-18 overexpression on bone metabolism by comparing bone characteristics in male IL-18 transgenic (TG) mice, which secrete mature murine IL-18 from their B- and T-cells, and their wildtype littermates (WT). Histopathological analysis revealed that the cortical bone of the femur was thinner and more deformed in IL-18 TG mice. Bone histomorphometry showed that the cortical bone area of the mid-diaphysis of the femur and the trabecular bone volume of the lumbar vertebrae were significantly reduced in IL-18 TG mice. IL-18 TG mice also exhibited significantly fewer osteoclasts and a reduced bone formation rate in the trabecular bones of their lumbar vertebrae. Real-time reverse transcriptase-polymerase chain reaction amplification of bone marrow cell mRNA revealed that interferon (IFN)-gamma mRNA expression was significantly increased, whereas IL-4 mRNA expression was significantly reduced, in IL-18 TG mice. However, the expression ratio of receptor activator of NFkappaB ligand and osteoprotegerin mRNA was not significantly altered. Thus, deformed cortical bone and a decreased turnover rate of lumbar trabecular bone are characteristic of IL-18 TG mice, and these features might be associated with the increased expression of IFN-gamma and IL-18 in the bone marrow.


Asunto(s)
Huesos/anomalías , Interleucina-18/fisiología , Animales , Linfocitos B/inmunología , Secuencia de Bases , Densidad Ósea , Cruzamientos Genéticos , Cartilla de ADN , Fémur/patología , Glicoproteínas/genética , Humanos , Interferón gamma/genética , Interleucina-18/genética , Interleucina-18/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Osteoprotegerina , ARN Mensajero/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores del Factor de Necrosis Tumoral , Valores de Referencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/inmunología , Transcripción Genética
9.
J Immunol ; 169(1): 323-9, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12077261

RESUMEN

The present study was conducted to critically determine the protective role of IL-18 in host response to Mycobacterium tuberculosis infection. IL-18-deficient (knockout (KO)) mice were slightly more prone to this infection than wild-type (WT) mice. Sensitivity of IL-12p40KO mice was lower than that of IL-12p40/IL-18 double KO mice. IFN-gamma production caused by the infection was significantly attenuated in IL-18KO mice compared with WT mice, as indicated by reduction in the levels of this cytokine in sera, spleen, lung, and liver, and its synthesis by spleen cells restimulated with purified protein derivatives. Serum IL-12p40 level postinfection and its production by peritoneal exudate cells stimulated with live bacilli were also significantly lower in IL-18KO mice than WT mice, suggesting that attenuated production of IFN-gamma was secondary to reduction of IL-12 synthesis. However, this was not likely the case, because administration of excess IL-12 did not restore the reduced IFN-gamma production in IL-18KO mice. In further studies, IL-18 transgenic mice were more resistant to the infection than control littermate mice, and serum IFN-gamma level and its production by restimulated spleen cells were increased in the former mice. Taken together, our results indicate that IL-18 plays an important role in Th1 response and host defense against M. tuberculosis infection although the contribution was not as profound as that of IL-12p40.


Asunto(s)
Interleucina-12/fisiología , Interleucina-18/fisiología , Mycobacterium tuberculosis/inmunología , Células TH1/inmunología , Tuberculosis/inmunología , Tuberculosis/prevención & control , Animales , Células Cultivadas , Predisposición Genética a la Enfermedad , Inmunidad Innata/genética , Interferón gamma/antagonistas & inhibidores , Interferón gamma/biosíntesis , Interleucina-12/antagonistas & inhibidores , Interleucina-12/deficiencia , Interleucina-12/genética , Subunidad p40 de la Interleucina-12 , Interleucina-18/deficiencia , Interleucina-18/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Subunidades de Proteína , Células TH1/metabolismo , Células TH1/microbiología , Tuberculosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA