Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685949

RESUMEN

Endothelial cells are a preferential target for SARS-CoV-2 infection. Previously, we have reported that vascular adenosine deaminase 1 (ADA1) may serve as a biomarker of endothelial activation and vascular inflammation, while ADA2 plays a critical role in monocyte and macrophage function. In this study, we investigated the activities of circulating ADA isoenzymes in patients 8 weeks after mild COVID-19 and related them to the parameters of inflammation and microvascular/endothelial function. Post-COVID patients revealed microvascular dysfunction associated with the changes in circulating parameters of endothelial dysfunction and inflammatory activation. Interestingly, serum total ADA and ADA2 activities were diminished in post-COVID patients, while ADA1 remained unchanged in comparison to healthy controls without a prior diagnosis of SARS-CoV-2 infection. While serum ADA1 activity tended to positively correspond with the parameters of endothelial activation and inflammation, sICAM-1 and TNFα, serum ADA2 activity correlated with IL-10. Simultaneously, post-COVID patients had lower circulating levels of ADA1-anchoring protein, CD26, that may serve as an alternative receptor for virus binding. This suggests that after the infection CD26 is rather maintained in cell-attached form, enabling ADA1 complexing. This study points to the possible role of ADA isoenzymes in cardiovascular complications after mild COVID-19.


Asunto(s)
Adenosina Desaminasa , COVID-19 , Enfermedades Vasculares , Humanos , COVID-19/metabolismo , Dipeptidil Peptidasa 4 , Células Endoteliales , Inflamación , Isoenzimas , SARS-CoV-2
2.
Front Physiol ; 14: 1216267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745244

RESUMEN

Background: Statins and proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) are cornerstones of therapy to prevent cardiovascular disease, acting by lowering lipid concentrations and only partially identified pleiotropic effects. This study aimed to analyze impacts of atorvastatin and synthetic peptide PCSK9i on bioenergetics and function of microvascular endothelial cells and cardiomyocytes. Methods: Mitochondrial function and abundance as well as intracellular nucleotides, membrane potential, cytoskeleton structure, and cell proliferation rate were evaluated in mouse heart microvascular endothelial cells (H5V) and cardiomyocytes (HL-1) under normal and hypoxia-mimicking conditions (CoCl2 exposure). Results: In normal conditions PCSK9i, unlike atorvastatin, enhanced mitochondrial respiratory parameters, increased nucleotide levels, prevented actin cytoskeleton disturbances and stimulated endothelial cell proliferation. Under hypoxia-mimicking conditions both atorvastatin and PCSK9i improved the mitochondrial respiration and membrane potential in both cell types. Conclusion: This study demonstrated that both treatments benefited the endothelial cell and cardiomyocyte bioenergetics, but the effects of PCSK9i were superior.

3.
Biomed Pharmacother ; 165: 115184, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37506580

RESUMEN

Adenosine is an endogenous nucleoside that regulates many physiological and pathological processes. It is derived from either the intracellular or extracellular dephosphorylation of adenosine triphosphate and interacts with cell-surface G-protein-coupled receptors. Adenosine plays a substantial role in protecting against cell damage in areas of increased tissue metabolism and preventing organ dysfunction in pathological states. Targeting adenosine metabolism and receptor signaling may be an effective therapeutic approach for human diseases, including cardiovascular and central nervous system disorders, rheumatoid arthritis, asthma, renal diseases, and cancer. Several lines of evidence have shown that many drugs exert their beneficial effects by modulating adenosine signaling pathways but this knowledge urgently needs to be summarized, and most importantly, actualized. The present review collects pharmaceuticals and pharmacological or diagnostic tools that target adenosine signaling in their primary or secondary mode of action. We overviewed FDA-approved drugs as well as those currently being studied in clinical trials. Among them are already used in clinic A2A adenosine receptor modulators like istradefylline or regadenoson, but also plenty of anti-platelet, anti-inflammatory, or immunosuppressive, and anti-cancer drugs. On the other hand, we investigated dozens of specific adenosine pathway regulators that are tested in clinical trials to treat human infectious and noninfectious diseases. In conclusion, targeting purinergic signaling represents a great therapeutic challenge. The actual knowledge of the involvement of adenosinergic signaling as part of the mechanism of action of old drugs has open a path not only for drug-repurposing but also for new therapeutic strategies.


Asunto(s)
Adenosina Trifosfato , Adenosina , Humanos , Adenosina/fisiología , Adenosina Trifosfato/metabolismo , Receptores Purinérgicos P1/metabolismo , Membrana Celular/metabolismo , Transducción de Señal/fisiología
4.
Front Mol Neurosci ; 15: 998023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204140

RESUMEN

Background: Adenosine deaminase (ADA) via two isoenzymes, ADA1 and ADA2, regulates intra- and extracellular adenosine concentrations by converting it to inosine. In the central nervous system (CNS), adenosine modulates the processes of neuroinflammation and demyelination that together play a critical role in the pathophysiology of multiple sclerosis (MS). Except for their catalytic activities, ADA isoenzymes display extra-enzymatic properties acting as an adhesion molecule or a growth factor. Aims: This study aimed to explore the distribution and activity of ADA1 and ADA2 in the plasma and the CSF of MS patients as well as in the human brain microvascular endothelial cells (HBMEC), human brain vascular pericytes and human astrocytes. Methods and results: The enzyme assay following reverse phase-high performance liquid chromatography (HPLC) analysis was used to detect the ADA1 and ADA2 activities and revealed an increased ratio of ADA1 to ADA2 in both the plasma and the CSF of MS patients. Plasma ADA1 activity was significantly induced in MS, while ADA2 was decreased in the CSF, but significance was not reached. The brain astrocytes, pericytes and endothelial cells revealed on their surface the activity of ADA1, with its basal level being five times higher in the endothelial cells than in the astrocytes or the pericytes. In turn, ADA2 activity was only observed in pericytes and endothelial cells. Stimulation of the cells with pro-inflammatory cytokines TNFα/IL17 for 18 h decreased intracellular nucleotide levels measured by HPLC only in pericytes. The treatment with TNFα/IL17 did not modulate cell-surface ATP and AMP hydrolysis nor adenosine deamination in pericytes or astrocytes. Whereas in endothelial cells it downregulated AMP hydrolysis and ADA2 activity and upregulated the ADA1, which reflects the ADA isoenzyme pattern observed here in the CSF of MS patients. Conclusion: In this study, we determined the impaired distribution of both ADA isoenzymes in the plasma and the CSF of patients with MS. The increased ADA1 to ADA2 ratio in the CSF and plasma may translate to unfavorable phenotype that triggers ADA1-mediated pro-inflammatory mechanisms and decreases ADA2-dependent neuroprotective and growth-promoting effects in MS.

5.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36077285

RESUMEN

LVAD therapy is an effective rescue in acute and especially chronic cardiac failure. In several scenarios, it provides a platform for regeneration and sustained myocardial recovery. While unloading seems to be a key element, pharmacotherapy may provide powerful tools to enhance effective cardiac regeneration. The synergy between LVAD support and medical agents may ensure satisfying outcomes on cardiomyocyte recovery followed by improved quality and quantity of patient life. This review summarizes the previous and contemporary strategies for combining LVAD with pharmacotherapy and proposes new therapeutic targets. Regulation of metabolic pathways, enhancing mitochondrial biogenesis and function, immunomodulating treatment, and stem-cell therapies represent therapeutic areas that require further experimental and clinical studies on their effectiveness in combination with mechanical unloading.


Asunto(s)
Insuficiencia Cardíaca , Corazón Auxiliar , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Humanos , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo
6.
Biomedicines ; 10(7)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35884844

RESUMEN

Chronic hypoxia drives vascular dysfunction by various mechanisms, including changes in mitochondrial respiration. Although endothelial cells (ECs) rely predominantly on glycolysis, hypoxia is known to alter oxidative phosphorylation, promote oxidative stress and induce dysfunction in ECs. Our work aimed to analyze the effects of prolonged treatment with hypoxia-mimetic agent CoCl2 on intracellular nucleotide concentration, extracellular nucleotide breakdown, mitochondrial function, and nitric oxide (NO) production in microvascular ECs. Moreover, we investigated how nucleotide precursor supplementation and adenosine deaminase inhibition protected against CoCl2-mediated disturbances. Mouse (H5V) and human (HMEC-1) microvascular ECs were exposed to CoCl2-mimicked hypoxia for 24 h in the presence of nucleotide precursors: adenine and ribose, and adenosine deaminase inhibitor, 2'deoxycoformycin. CoCl2 treatment decreased NO production by ECs, depleted intracellular ATP concentration, and increased extracellular nucleotide and adenosine catabolism in both H5V and HMEC-1 cell lines. Diminished intracellular ATP level was the effect of disturbed mitochondrial phosphorylation, while nucleotide precursors effectively restored the ATP pool via the salvage pathway and improved endothelial function under CoCl2 treatment. Endothelial protective effects of adenine and ribose were further enhanced by adenosine deaminase inhibition, that increased adenosine concentration. This work points to a novel strategy for protection of hypoxic ECs by replenishing the adenine nucleotide pool and promoting adenosine signaling.

7.
Biology (Basel) ; 11(5)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35625403

RESUMEN

The disruption of the metabolism of extracellular NAD+ and NMN may affect related signaling cascades and pathologies, such as cardiovascular or respiratory system diseases. We aimed to study NAD+ and NMN hydrolysis on surface endothelial cells of diverse origins and with genetically modified nucleotide catabolism pathways. We tested lung endothelial cells isolated from C57BL/6 J wild-type (WT) and C57BL/6 J CD73 knockout (CD73 KO) mice, the transfected porcine iliac artery endothelial cell line (PIEC) with the human E5NT gene for CD73 (PIEC CD73), and a mock-transfected control (PIEC MOCK), as well as HMEC-1 and H5V cells. Substrate conversion into the product was followed by high-performance liquid chromatography (HPLC). We showed profound differences in extracellular NAD+ and NMN metabolism related to the vessel origin, species diversity, and type of culture. We also confirmed the involvement of CD38 and CD73 in NAD+ and NMN cleavage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...