Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Anat ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760969

RESUMEN

This article is based on my talk at the meeting "3rd Advances in Craniosynostosis: Basic Science to Clinical Practice", held at University College, London, on 25 August 2023. It describes my contribution, together with that of my research team and external collaborators, to the field of craniofacial development. This began with my PhD research on the effects of excess vitamin A in rat embryos, which led to a study of normal as well as abnormal formation of the cranial neural tube. Many techniques for analysing morphogenetic change became available to me over the years: whole embryo culture, scanning and transmission electron microscopy, cell division analysis, immunohistochemistry and biochemical analysis of the extracellular matrix. The molecular revolution of the 1980s, and key collaborations with international research teams, enabled functional interpretation of some of the earlier morphological observations and required a change of experimental species to the mouse. Interactions between the molecular and experimental analysis of craniofacial morphogenesis in my laboratory with specialists in molecular genetics and clinicians brought my research journey near to my original aim: to contribute to a better understanding of the causes of human congenital anomalies.

2.
Wiley Interdiscip Rev RNA ; 15(2): e1838, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38509732

RESUMEN

Disruptions in spatiotemporal gene expression can result in atypical brain function. Specifically, autism spectrum disorder (ASD) is characterized by abnormalities in pre-mRNA splicing. Abnormal splicing patterns have been identified in the brains of individuals with ASD, and mutations in splicing factors have been found to contribute to neurodevelopmental delays associated with ASD. Here we review studies that shed light on the importance of splicing observed in ASD and that explored the intricate relationship between splicing factors and ASD, revealing how disruptions in pre-mRNA splicing may underlie ASD pathogenesis. We provide an overview of the research regarding all splicing factors associated with ASD and place a special emphasis on five specific splicing factors-HNRNPH2, NOVA2, WBP4, SRRM2, and RBFOX1-known to impact the splicing of ASD-related genes. In the discussion of the molecular mechanisms influenced by these splicing factors, we lay the groundwork for a deeper understanding of ASD's complex etiology. Finally, we discuss the potential benefit of unraveling the connection between splicing and ASD for the development of more precise diagnostic tools and targeted therapeutic interventions. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Evolution and Genomics > Computational Analyses of RNA RNA-Based Catalysis > RNA Catalysis in Splicing and Translation.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , Factores de Empalme de ARN/metabolismo , Antígeno Ventral Neuro-Oncológico
3.
PLoS Biol ; 21(6): e3002175, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37379322

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) protein 1 (TAL1) is a central transcription factor in hematopoiesis. The timing and level of TAL1 expression orchestrate the differentiation to specialized blood cells and its overexpression is a common cause of T-ALL. Here, we studied the 2 protein isoforms of TAL1, short and long, which are generated by the use of alternative promoters as well as by alternative splicing. We analyzed the expression of each isoform by deleting an enhancer or insulator, or by opening chromatin at the enhancer location. Our results show that each enhancer promotes expression from a specific TAL1 promoter. Expression from a specific promoter gives rise to a unique 5' UTR with differential regulation of translation. Moreover, our study suggests that the enhancers regulate TAL1 exon 3 alternative splicing by inducing changes in the chromatin at the splice site, which we demonstrate is mediated by KMT2B. Furthermore, our results indicate that TAL1-short binds more strongly to TAL1 E-protein partners and functions as a stronger transcription factor than TAL1-long. Specifically TAL1-short has a unique transcription signature promoting apoptosis. Finally, when we expressed both isoforms in mice bone marrow, we found that while overexpression of both isoforms prevents lymphoid differentiation, expression of TAL1-short alone leads to hematopoietic stem cell exhaustion. Furthermore, we found that TAL1-short promoted erythropoiesis and reduced cell survival in the CML cell line K562. While TAL1 and its partners are considered promising therapeutic targets in the treatment of T-ALL, our results show that TAL1-short could act as a tumor suppressor and suggest that altering TAL1 isoform's ratio could be a preferred therapeutic approach.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cromatina , Hematopoyesis/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Isoformas de Proteínas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda/genética , Factores de Transcripción/metabolismo
4.
NAR Cancer ; 3(3): zcab029, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34316716

RESUMEN

Enhancer demethylation in leukemia has been shown to lead to overexpression of genes which promote cancer characteristics. The vascular endothelial growth factor A (VEGFA) enhancer, located 157 Kb downstream of its promoter, is demethylated in chronic myeloid leukemia (CML). VEGFA has several alternative splicing isoforms with different roles in cancer progression. Since transcription and splicing are coupled, we wondered whether VEGFA enhancer activity can also regulate the gene's alternative splicing to contribute to the pathology of CML. Our results show that mutating the VEGFA +157 enhancer promotes exclusion of exons 6a and 7 and activating the enhancer by tethering a chromatin activator has the opposite effect. In line with these results, CML patients present with high expression of +157 eRNA and inclusion of VEGFA exons 6a and 7. In addition, our results show that the positive regulator of RNAPII transcription elongation, CCNT2, binds VEGFA's promoter and enhancer, and its silencing promotes exclusion of exons 6a and 7 as it slows down RNAPII elongation rate. Thus our results suggest that VEGFA's +157 enhancer regulates its alternative splicing by increasing RNAPII elongation rate via CCNT2. Our work demonstrates for the first time a connection between an endogenous enhancer and alternative splicing regulation of its target gene.

5.
RNA ; 27(11): 1353-1362, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34321328

RESUMEN

Changes in the cellular environment result in chromatin structure alteration, which in turn regulates gene expression. To learn about the effect of the cellular environment on the transcriptome, we studied the H3K9 demethylase KDM3A. Using RNA-seq, we found that KDM3A regulates the transcription and alternative splicing of genes associated with cell cycle and DNA damage. We showed that KDM3A undergoes phosphorylation by PKA at serine 265 following DNA damage, and that the phosphorylation is important for proper cell-cycle regulation. We demonstrated that SAT1 alternative splicing, regulated by KDM3A, plays a role in cell-cycle regulation. Furthermore we found that KDM3A's demethylase activity is not needed for SAT1 alternative splicing regulation. In addition, we identified KDM3A's protein partner ARID1A, the SWI/SNF subunit, and SRSF3 as regulators of SAT1 alternative splicing and showed that KDM3A is essential for SRSF3 binding to SAT1 pre-mRNA. These results suggest that KDM3A serves as a sensor of the environment and an adaptor for splicing factor binding. Our work reveals chromatin sensing of the environment in the regulation of alternative splicing.


Asunto(s)
Acetiltransferasas/metabolismo , Empalme Alternativo , Neoplasias de la Mama/patología , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas con Dominio de Jumonji/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Factores de Transcripción/metabolismo , Acetiltransferasas/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Células MCF-7 , Fosforilación , Unión Proteica , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Transcripción/genética
6.
Trends Genet ; 37(3): 266-278, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32950269

RESUMEN

Pre-mRNA splicing is a fundamental process in mammalian gene expression, and alternative splicing plays an extensive role in generating protein diversity. Because the majority of genes undergo pre-mRNA splicing, most cellular processes depend on proper spliceosome function. We focus on the cell cycle and describe its dependence on pre-mRNA splicing and accurate alternative splicing. We outline the key cell-cycle factors and their known alternative splicing isoforms. We discuss different levels of pre-mRNA splicing regulation such as post-translational modifications and changes in the expression of splicing factors. We describe the effect of chromatin dynamics on pre-mRNA splicing during the cell cycle. In addition, we focus on spliceosome component SF3B1, which is mutated in many types of cancer, and describe the link between SF3B1 and its inhibitors and the cell cycle.


Asunto(s)
Empalme Alternativo/genética , Ciclo Celular/genética , Precursores del ARN/genética , Empalme del ARN/genética , Animales , Regulación de la Expresión Génica , Humanos , Isoformas de Proteínas/genética , Procesamiento Proteico-Postraduccional/genética , Empalmosomas/genética
7.
Genes (Basel) ; 11(8)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32756364

RESUMEN

Breast cancer is the second leading cause of death in women above 60 years in the US. Screening mammography is recommended for women above 50 years; however, 22% of breast cancer cases are diagnosed in women below this age. We set out to develop a test based on the detection of cell-free RNA from saliva. To this end, we sequenced RNA from a pool of ten women. The 1254 transcripts identified were enriched for genes with an annotation of alternative pre-mRNA splicing. Pre-mRNA splicing is a tightly regulated process and its misregulation in cancer cells promotes the formation of cancer-driving isoforms. For these reasons, we chose to focus on splicing factors as biomarkers for the early detection of breast cancer. We found that the level of the splicing factors is unique to each woman and consistent in the same woman at different time points. Next, we extracted RNA from 36 healthy subjects and 31 breast cancer patients. Recording the mRNA level of seven splicing factors in these samples demonstrated that the combination of all these factors is different in the two groups (p value = 0.005). Our results demonstrate a differential abundance of splicing factor mRNA in the saliva of breast cancer patients.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/diagnóstico , Factores de Empalme de ARN/genética , ARN Mensajero/genética , Saliva/metabolismo , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Factores de Empalme de ARN/metabolismo , ARN Mensajero/metabolismo
8.
RNA ; 25(7): 813-824, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30988101

RESUMEN

Splicing of precursor mRNA (pre-mRNA) is an important regulatory step in gene expression. Recent evidence points to a regulatory role of chromatin-related proteins in alternative splicing regulation. Using an unbiased approach, we have identified the acetyltransferase p300 as a key chromatin-related regulator of alternative splicing. p300 promotes genome-wide exon inclusion in both a transcription-dependent and -independent manner. Using CD44 as a paradigm, we found that p300 regulates alternative splicing by modulating the binding of splicing factors to pre-mRNA. Using a tethering strategy, we found that binding of p300 to the CD44 promoter region promotes CD44v exon inclusion independently of RNAPII transcriptional elongation rate. Promoter-bound p300 regulates alternative splicing by acetylating splicing factors, leading to exclusion of hnRNP M from CD44 pre-mRNA and activation of Sam68. p300-mediated CD44 alternative splicing reduces cell motility and promotes epithelial features. Our findings reveal a chromatin-related mechanism of alternative splicing regulation and demonstrate its impact on cellular function.


Asunto(s)
Empalme Alternativo , Neoplasias de la Mama/genética , Cromatina/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptores de Hialuranos/genética , Factores de Empalme de ARN/química , Acetilación , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cromatina/genética , Proteína p300 Asociada a E1A/genética , Exones , Femenino , Humanos , Receptores de Hialuranos/metabolismo , Regiones Promotoras Genéticas , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Transcripción Genética , Células Tumorales Cultivadas
9.
J Anat ; 234(6): 943-944, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30924926
10.
J Allergy Clin Immunol ; 140(1): 204-214.e8, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27871875

RESUMEN

BACKGROUND: We have recently observed that oxidative phosphorylation-mediated ATP production is essential for mast cell function. Pyruvate dehydrogenase (PDH) is the main regulator of the Krebs cycle and is located upstream of the electron transport chain. However, the role of PDH in mast cell function has not been described. Microphthalmia transcription factor (MITF) regulates the development, number, and function of mast cells. Localization of MITF to the mitochondria and its interaction with mitochondrial proteins has not been explored. OBJECTIVE: We sought to explore the role played by PDH in mast cell exocytosis and to determine whether MITF is localized in the mitochondria and involved in regulation of PDH activity. METHODS: Experiments were performed in vitro by using human and mouse mast cells, as well as rat basophil leukemia cells, and in vivo in mice. The effect of PDH inhibition on mast cell function was examined. PDH interaction with MITF was measured before and after immunologic activation. Furthermore, mitochondrial localization of MITF and its effect on PDH activity were determined. RESULTS: PDH is essential for immunologically mediated degranulation of mast cells. After activation, PDH is serine dephosphorylated. In addition, for the first time, we show that MITF is partially located in the mitochondria and interacts with PDH. This interaction is dependent on the phosphorylation state of PDH. Furthermore, mitochondrial MITF regulates PDH activity. CONCLUSION: The association of mitochondrial MITF with PDH emerges as an important regulator of mast cell function. Our findings indicate that PDH could arise as a new target for the manipulation of allergic diseases.


Asunto(s)
Cetona Oxidorreductasas/inmunología , Mastocitos/inmunología , Factor de Transcripción Asociado a Microftalmía/inmunología , Adenosina Trifosfato/metabolismo , Alérgenos/inmunología , Animales , Asma/inmunología , Líquido del Lavado Bronquioalveolar/citología , Recuento de Células , Degranulación de la Célula , Línea Celular Tumoral , Células Cultivadas , Exocitosis , Femenino , Células HEK293 , Humanos , Masculino , Mastocitos/metabolismo , Mastocitos/fisiología , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Factor de Transcripción Asociado a Microftalmía/genética , Mitocondrias/inmunología , Mitocondrias/metabolismo , Ovalbúmina/inmunología , Ratas
11.
J Anat ; 229(1): 2-31, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27278888

RESUMEN

The Journal of Anatomy was launched 150 years ago as the Journal of Anatomy and Physiology, in an age when anatomy and physiology were not regarded as separate disciplines. European science in general was advancing rapidly at the time (it was 7 years after publication of Darwin's Origin of Species), and the recent demise of the Natural History Review meant that there was no English language publication covering these subjects. The founding editors were George Murray Humphry of Cambridge and William Turner of Edinburgh, together with Alfred Newton of Cambridge and Edward Perceval Wright of Dublin (the last two served only for a year). The pivotal event leading to the Journal's foundation was the 1866 meeting of the British Association, at which Humphry delivered the 'Address in Physiology' (printed in the first issue). Turner, who was also present at the 1866 British Association meeting, remained as a member of the editorial team for 50 years and was a major contributor of Journal articles. The title was changed to Journal of Anatomy in October 1916, when it was taken under the wing, in terms of both management and ownership, by the Anatomical Society. This article reviews the early years of the Journal's publication in more detail than later years because of the historical interest of this less familiar material. The subject matter, which has remained surprisingly consistent over the years, is illustrated by examples from some notable contributions. The evolution of illustration techniques is surveyed from 1866 to the present day; the final section provides brief summaries of all of the chief editors.


Asunto(s)
Anatomía/historia , Publicaciones Periódicas como Asunto/historia , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Ilustración Médica
12.
Int J Cardiol ; 195: 85-94, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26025865

RESUMEN

BACKGROUND: Congestive heart failure (CHF) is a significant health care burden in developed countries. However, the molecular events leading from cardiac hypertrophy to CHF are unclear and preventive therapeutic approaches are limited. We have previously described that microphthalmia-associated transcription factor (MITF) is a key regulator of cardiac hypertrophy, but its cardiac targets are still uncharacterized. METHODS AND RESULTS: Gene array analysis of hearts from MITF-mutated mice indicated that ErbB2 interacting protein (Erbin) is a candidate target gene for MITF. We have recently demonstrated that Erbin is decreased in human heart failure and plays a role as a negative modulator of pathological cardiac hypertrophy. Here we show that Erbin expression is regulated by MITF. Under basal conditions MITF activates Erbin expression by direct binding to its promoter. However, under ß-adrenergic stimulation Erbin expression is decreased only in wild type mice, but not in MITF-mutated mice. Yeast two-hybrid screening, using MITF as bait, identified an interaction with the cardiac-predominant four-and-a-half LIM domain protein 2 (FHL2), which was confirmed by co-immunoprecipitation in both mouse and human hearts. Upon ß-adrenergic stimulation, FHL2 and MITF bind Erbin promoter as a complex and repress MITF-directed Erbin expression. Overexpression of FHL2 alone had no effect on Erbin expression, but in the presence of MITF, Erbin expression was decreased. FHL2-MITF association was also increased in biopsies of heart failure patients. CONCLUSION: MITF unexpectedly regulates both the activation and the repression of Erbin expression. This ligand mediated fine tuning of its gene expression could be an important mechanism in the process of cardiac hypertrophy and heart failure.


Asunto(s)
Cardiomegalia/genética , Proteínas Portadoras/genética , Regulación de la Expresión Génica/fisiología , Ventrículos Cardíacos/patología , Proteínas con Homeodominio LIM/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Proteínas Musculares/metabolismo , Factores de Transcripción/metabolismo , Animales , Biopsia , Cardiomegalia/metabolismo , Cardiomegalia/patología , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Activación Transcripcional/fisiología
13.
Proc Natl Acad Sci U S A ; 111(16): 5902-7, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24711380

RESUMEN

ErbB2 interacting protein (Erbin) is a widely expressed protein and participates in inhibition of several intracellular signaling pathways. Its mRNA has been found to be present in relatively high levels in the heart. However, its physiological role in the heart has not been explored. In the present work, we elucidated the role of Erbin in cardiac hypertrophy. Cardiac hypertrophy was induced in mice either by isoproterenol administration or by aortic constriction. The level of Erbin was significantly decreased in both models. Erbin(-/-) mice rapidly develop decompensated cardiac hypertrophy, and following severe pressure overload all Erbin(-/-) mice died from heart failure. Down-regulation of Erbin expression was also observed in biopsies derived from human failing hearts. It is known that Erbin inhibits Ras-mediated activation of the extracellular signal-regulated kinase (ERK) by binding to Soc-2 suppressor of clear homolog (Shoc2). Our data clearly show that ERK phosphorylation is enhanced in the heart tissues of Erbin(-/-) mice. Furthermore, we clearly demonstrate here that Erbin associates with Shoc2 in both whole hearts and in cardiomyocytes, and that in the absence of Erbin, Raf is phosphorylated and binds Shoc2, resulting in ERK phosphorylation. In conclusion, Erbin is an inhibitor of pathological cardiac hypertrophy, and this inhibition is mediated, at least in part, by modulating ERK signaling.


Asunto(s)
Cardiomegalia/patología , Proteínas Portadoras/metabolismo , Animales , Biomarcadores/metabolismo , Cardiomegalia/genética , Progresión de la Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Isoproterenol/farmacología , Ratones , Miocardio/metabolismo , Miocardio/patología , Fosforilación/efectos de los fármacos , Presión
14.
J Allergy Clin Immunol ; 134(2): 460-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24582310

RESUMEN

BACKGROUND: The involvement of mitochondrial oxidative phosphorylation (OXPHOS) in mast cell exocytosis was recently suggested by the finding that mitochondria translocate to exocytosis sites upon mast cell activation. In parallel, mitochondrial signal transducer and activator of transcription 3 (STAT3) was found to be involved in ATP production. However, the regulation of mitochondrial STAT3 function and its connection to mast cell exocytosis is unknown. OBJECTIVE: We sought to explore the role played by mitochondrial STAT3 in mast cell exocytosis. METHODS: Experiments were performed in vitro with human and mouse mast cells and rat basophilic leukemia (RBL) cells and in vivo in mice. OXPHOS activity was measured after immunologic activation. The expression of STAT3, extracellular signal-regulated kinase 1/2, and protein inhibitor of activated STAT3 in the mitochondria during mast cell activation was determined, as was the effect of STAT3 inhibition on OXPHOS activity and mast cell function. RESULTS: Here we show that mitochondrial STAT3 is essential for immunologically mediated degranulation of human and mouse mast cells and RBL cells. Additionally, in IgE-antigen-activated RBL cells, mitochondrial STAT3 was phosphorylated on serine 727 in an extracellular signal-regulated kinase 1/2-dependent manner, which was followed by induction of OXPHOS activity. Furthermore, the endogenous inhibitor of STAT3, protein inhibitor of activated STAT3, was found to inhibit OXPHOS activity in the mitochondria, resulting in inhibition of mast cell degranulation. Moreover, mice injected with Stattic, a STAT3 inhibitor, had a significant decrease in histamine secretion. CONCLUSION: These results provide the first evidence of a regulatory role for mitochondrial STAT3 in mast cell functions, and therefore mitochondrial STAT3 could serve as a new target for the manipulation of allergic diseases.


Asunto(s)
Inmunoglobulina E/genética , Mastocitos/patología , Factor de Transcripción STAT3/inmunología , Animales , Antígenos/inmunología , Antígenos/farmacología , Degranulación de la Célula/efectos de los fármacos , Línea Celular Tumoral , Óxidos S-Cíclicos/farmacología , Dinitrofenoles/inmunología , Dinitrofenoles/farmacología , Exocitosis/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Inmunoglobulina E/inmunología , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , Ratones , Ratones Endogámicos C3H , Mitocondrias/genética , Mitocondrias/inmunología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/inmunología , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/inmunología , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/inmunología , Fosforilación Oxidativa , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/inmunología , Ratas , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Transducción de Señal
15.
Mamm Genome ; 23(7-8): 404-15, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22538705

RESUMEN

C16orf35 is a conserved and widely expressed gene lying adjacent to the human α-globin cluster in all vertebrate species. In-depth sequence analysis shows that C16orf35 (now called NPRL3) is an orthologue of the yeast gene Npr3 (nitrogen permease regulator 3) and, furthermore, is a paralogue of its protein partner Npr2. The yeast Npr2/3 dimeric protein complex senses amino acid starvation and appropriately adjusts cell metabolism via the TOR pathway. Here we have analysed a mouse model in which expression of Nprl3 has been abolished using homologous recombination. The predominant effect on RNA expression appears to involve genes that regulate protein synthesis and cell cycle, consistent with perturbation of the mTOR pathway. Embryos homozygous for this mutation die towards the end of gestation with a range of cardiovascular defects, including outflow tract abnormalities and ventriculoseptal defects consistent with previous observations, showing that perturbation of the mTOR pathway may affect development of the myocardium. NPRL3 is a candidate gene for harbouring mutations in individuals with developmental abnormalities of the cardiovascular system.


Asunto(s)
Sistema Cardiovascular/embriología , Cardiopatías Congénitas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Anomalías Múltiples/genética , Secuencia de Aminoácidos , Animales , Células Cultivadas , Análisis Mutacional de ADN , Femenino , Proteínas Activadoras de GTPasa , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Cardiopatías Congénitas/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/fisiología , Masculino , Ratones , Ratones Noqueados , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Miocardio/patología , Fenotipo , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas
16.
J Allergy Clin Immunol ; 129(5): 1357-1366.e5, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22360977

RESUMEN

BACKGROUND: Microphthalmia transcription factor, an MiT transcription family member closely related to transcription factor E3 (TFE3), is essential for mast cell development and survival. TFE3 was previously reported to play a role in the functions of B and T cells; however, its role in mast cells has not yet been explored. OBJECTIVE: We sought to explore the role played by TFE3 in mast cell function. METHODS: Mast cell numbers were evaluated by using toluidine blue staining. FACS analysis was used to determine percentages of Kit and FcεRI double-positive cells in the peritoneum of wild-type (WT) and TFE3 knockout (TFE3(-/-)) mice. Cytokine and inflammatory mediator secretion were measured in immunologically activated cultured mast cells derived from either knockout or WT mice. In vivo plasma histamine levels were measured after immunologic triggering of these mice. RESULTS: No significant differences in mast cell numbers between WT and TFE3(-/-) mice were observed in the peritoneum, lung, and skin. However, TFE3(-/-) mice showed a marked decrease in the number of Kit(+) and FcεRI(+) peritoneal and cultured mast cells. Surface expression levels of FcεRI in TFE3(-/-) peritoneal mast cells was significantly lower than in control cells. Cultured mast cells derived from TFE3(-/-) mice showed a marked decrease in degranulation and mediator secretion. In vivo experiments showed that the level of plasma histamine in TFE3(-/-) mice after an allergic trigger was substantially less than that seen in WT mice. CONCLUSION: TFE3 is a novel regulator of mast cell functions and as such could emerge as a new target for the manipulation of allergic diseases.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Hipersensibilidad/inmunología , Mastocitos/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Degranulación de la Célula/genética , Separación Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Citometría de Flujo , Histamina/genética , Histamina/metabolismo , Hipersensibilidad/genética , Hipersensibilidad/patología , Inmunización , Mediadores de Inflamación/metabolismo , Mastocitos/inmunología , Mastocitos/patología , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Factor de Transcripción Asociado a Microftalmía/genética , Peritoneo/patología , Receptores de IgE/genética , Receptores de IgE/metabolismo
17.
J Anat ; 220(1): 1-2, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22150032
18.
Mol Cell Biol ; 31(10): 2111-21, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21402779

RESUMEN

We recently reported that diadenosine tetraphosphate hydrolase (Ap(4)A hydrolase) plays a critical role in gene expression via regulation of intracellular Ap(4)A levels. This enzyme serves as a component of our newly described lysyl tRNA synthetase (LysRS)-Ap(4)A biochemical pathway that is triggered upon immunological challenge. Here we explored the mechanism of this enzyme's translocation into the nucleus and found its immunologically dependent association with importin beta. Silencing of importin beta prevented Ap(4)A hydrolase nuclear translocation and affected the local concentration of Ap(4)A, which led to an increase in microphthalmia transcription factor (MITF) transcriptional activity. Furthermore, immunological activation of mast cells resulted in dephosphorylation of Ap(4)A hydrolase, which changed the hydrolytic activity of the enzyme.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Núcleo Celular/metabolismo , Lisina-ARNt Ligasa/metabolismo , Mastocitos/inmunología , beta Carioferinas/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Fosfatos de Dinucleósidos/análisis , Citometría de Flujo , Expresión Génica , Inmunoglobulina E/inmunología , Inmunoprecipitación , Lisina-ARNt Ligasa/genética , Mastocitos/metabolismo , Ratones , Factor de Transcripción Asociado a Microftalmía/genética , Reacción en Cadena de la Polimerasa , Procesamiento Proteico-Postraduccional , Interferencia de ARN , ARN Interferente Pequeño , Ratas , beta Carioferinas/genética
19.
J Anat ; 216(2): 157, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20447243
20.
Trends Immunol ; 31(5): 199-204, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20181527

RESUMEN

Protein inhibitor of activated STAT3 (PIAS3), the main cellular inhibitor of signal transducers and activator of transcription 3 (STAT3), has been described as a modulator of DNA binding transcription factors. The exploration of the emerging roles of PIAS3 in immune regulation is a growing and fascinating field. Recent discoveries have shed new light on the key role of PIAS3 in the regulation of transcriptional activity, and on the molecular mechanism involved. These findings suggest that the known functions of this signalling molecule are merely the "tip of the iceberg". This article reviews the challenging questions regarding the link between PIAS3 and the intracellular signalling in immune cells. Some of the known functions of PIAS3 that potentially modulate key proteins in the immune system will also be discussed.


Asunto(s)
Proteínas Inhibidoras de STAT Activados/inmunología , Animales , Humanos , Factor de Transcripción Asociado a Microftalmía/inmunología , Factor de Transcripción Asociado a Microftalmía/metabolismo , Unión Proteica , Proteínas Inhibidoras de STAT Activados/metabolismo , Factor de Transcripción STAT3/inmunología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA