Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 11(3)2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35159150

RESUMEN

The circadian clock orchestrates an organism's endogenous processes with environmental 24 h cycles. Redox homeostasis and the circadian clock regulate one another to negate the potential effects of our planet's light/dark cycle on the generation of reactive oxygen species (ROS) and attain homeostasis. Selenoproteins are an important class of redox-related enzymes that have a selenocysteine residue in the active site. This study reports functional understanding of how environmental and endogenous circadian rhythms integrate to shape the selenoproteome in a model eukaryotic cell. We mined quantitative proteomic data for the 24 selenoproteins of the picoeukaryote Ostreococcus tauri across time series, under environmentally rhythmic entrained conditions of light/dark (LD) cycles, compared to constant circadian conditions of constant light (LL). We found an overrepresentation of selenoproteins among rhythmic proteins under LL, but an underrepresentation under LD conditions. Rhythmic selenoproteins under LL that reach peak abundance later in the day showed a greater relative amplitude of oscillations than those that peak early in the day. Under LD, amplitude did not correlate with peak phase; however, we identified high-amplitude selenium uptake rhythms under LD but not LL conditions. Selenium deprivation induced strong qualitative defects in clock gene expression under LD but not LL conditions. Overall, the clear conclusion is that the circadian and environmental cycles exert differential effects on the selenoproteome, and that the combination of the two enables homeostasis. Selenoproteins may therefore play an important role in the cellular response to reactive oxygen species that form as a consequence of the transitions between light and dark.


Asunto(s)
Relojes Circadianos , Selenio , Relojes Circadianos/fisiología , Fotoperiodo , Proteómica , Especies Reactivas de Oxígeno
2.
Commun Biol ; 4(1): 1147, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593975

RESUMEN

The cellular landscape changes dramatically over the course of a 24 h day. The proteome responds directly to daily environmental cycles and is additionally regulated by the circadian clock. To quantify the relative contribution of diurnal versus circadian regulation, we mapped proteome dynamics under light:dark cycles compared with constant light. Using Ostreococcus tauri, a prototypical eukaryotic cell, we achieved 85% coverage, which allowed an unprecedented insight into the identity of proteins that facilitate rhythmic cellular functions. The overlap between diurnally- and circadian-regulated proteins was modest and these proteins exhibited different phases of oscillation between the two conditions. Transcript oscillations were generally poorly predictive of protein oscillations, in which a far lower relative amplitude was observed. We observed coordination between the rhythmic regulation of organelle-encoded proteins with the nuclear-encoded proteins that are targeted to organelles. Rhythmic transmembrane proteins showed a different phase distribution compared with rhythmic soluble proteins, indicating the existence of a circadian regulatory process specific to the biogenesis and/or degradation of membrane proteins. Our observations argue that the cellular spatiotemporal proteome is shaped by a complex interaction between intrinsic and extrinsic regulatory factors through rhythmic regulation at the transcriptional as well as post-transcriptional, translational, and post-translational levels.


Asunto(s)
Proteínas Algáceas/genética , Chlorophyta/fisiología , Ambiente , Periodicidad , Proteoma/genética , Proteínas Algáceas/metabolismo , Chlorophyta/genética , Proteoma/metabolismo , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...