Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Plant J ; 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39413246

RESUMEN

The circadian clock organizes physiological processes in plants to occur at specific times of the day, optimizing efficient use of resources. Nitrate is a crucial inorganic nitrogen source for agricultural systems to sustain crop productivity. However, because nitrate fertilization has a negative impact on the environment, it is important to carefully manage nitrate levels. Understanding crop biological rhythms can lead to more ecologically friendly agricultural practices. Gating responses through the circadian clock could be a strategy to enhance root nitrate uptake and to limit nitrate runoff. In Arabidopsis, the NITRATE TRANSPORTER 2.1 (NRT2.1) gene encodes a key component of the high-affinity nitrate transporter system. Our study reveals that NRT2.1 exhibits a rhythmic expression pattern, with daytime increases and nighttime decreases. The NRT2.1 promoter activity remains rhythmic under constant light, indicating a circadian regulation. The clock-associated transcription factor LUX ARRHYTHMO (LUX) binds to the NRT2.1 promoter in vivo. Loss-of-function of LUX leads to increased NRT2.1 transcript levels and root nitrate uptake at dusk. This supports LUX acting as a transcriptional repressor and modulating NRT2.1 expression in a time-dependent manner. Furthermore, applying nitrate at different times of the day results in varying magnitudes of the transcriptional response in nitrate-regulated genes. We also demonstrate that a defect in the high-affinity nitrate transport system feeds back to the central oscillator by modifying the LUX promoter activity. In conclusion, this study uncovers a molecular pathway connecting the root nitrate uptake and circadian clock, with potential agro-chronobiological applications.

2.
bioRxiv ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39345648

RESUMEN

Background: It has been reported that circadian clock components, Brain and Muscle ARNT-Like 1 (BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK), are uniquely essential for glioblastoma (GBM) stem cell (GSC) biology and survival. Consequently, we developed a novel Cryptochrome (CRY) activator SHP1705, which inhibits BMAL1-CLOCK transcriptional activity. Methods: We analyzed buffy coats isolated from Phase 1 clinical trial subjects' blood to assess any changes to circadian, housekeeping, and blood transcriptome-based biomarkers following SHP1705 treatment. We utilized GlioVis to determine which circadian genes are differentially expressed in non-tumor versus GBM tissues. We employed in vitro and in vivo methods to test the efficacy of SHP1705 against patient-derived GSCs and xenografts in comparison to earlier CRY activator scaffolds. Additionally, we applied a novel-REV-ERB agonist SR29065, which inhibits BMAL1 transcription, to determine whether targeting both negative limbs of the circadian transcription-translation feedback loop (TTFL) would yield synergistic effects against various GBM cells. Results: SHP1705 is safe and well-tolerated in Phase I clinical trials. SHP1705 has increased selectivity for the CRY2 isoform and potency against GSC viability compared to previously published CRY activators. SHP1705 prolonged survival in mice bearing GBM tumors established with GSCs. When combined with the novel REV-ERB agonist SR29065, SHP1705 displayed synergy against multiple GSC lines and differentiated GSCs (DGCs). Conclusions: These demonstrate the efficacy of SHP1705 against GSCs, which pose for GBM patient outcomes. They highlight the potential of novel circadian clock compounds in targeting GBM as single agents or in combination with each other or current standard-of-care. KEY POINTS: SHP1705 is a novel CRY2 activator that has shown success in Phase 1 safety trialsSHP1705 has a significantly improved efficacy against GSCs and GBM PDX tumorsNovel REV-ERB agonist SR29065 and SHP1705 display synergistic effects against GSCs. IMPORTANCE OF THE STUDY: CRY2 is decreased in GBM tissues compared to CRY1 suggesting that promoting CRY2 activity will be an efficacious GBM treatment paradigm. SHP1705, a CRY2 activator that has shown success in Phase 1 safety trials, has significantly improved preclinical efficacy. Novel REV-ERB agonist SR29065 displays synergistic effects against diverse GBM cells.

3.
Proc Natl Acad Sci U S A ; 121(30): e2315778121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012827

RESUMEN

For plants adapted to bright light, a decrease in the amount of light received can be detrimental to their growth and survival. Consequently, in response to shade from surrounding vegetation, they initiate a suite of molecular and morphological changes known as the shade avoidance response through which stems and petioles elongate in search for light. Under sunlight-night cycles, the plant's responsiveness to shade varies across the day, being maximal at dusk time. While a role for the circadian clock in this regulation has long been proposed, mechanistic understanding of how it is achieved is incomplete. Here, we show that the clock component GIGANTEA (GI) directly interacts with the transcriptional regulator PHYTOCHROME INTERACTING FACTOR 7 (PIF7), a key player in the response to shade. GI represses PIF7 transcriptional activity and the expression of its target genes in response to shade, thereby fine-tuning the magnitude of the response to limiting light conditions. We find that under light/dark cycles, this function of GI is required to adequately modulate the gating of the response to shade at dusk. Importantly, we also show that this circuit primarily operates in epidermal cells, highlighting the relevance of tissue-specific clock-output connections for the regulation of plant development in resonance with the environment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación de la Expresión Génica de las Plantas , Luz , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ritmo Circadiano/fisiología , Relojes Circadianos/fisiología , Relojes Circadianos/genética , Proteínas de Unión al ADN
4.
bioRxiv ; 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38746115

RESUMEN

Circadian clock genes are emerging targets in many types of cancer, but their mechanistic contributions to tumor progression are still largely unknown. This makes it challenging to stratify patient populations and develop corresponding treatments. In this work, we show that in breast cancer, the disrupted expression of circadian genes has the potential to serve as biomarkers. We also show that the master circadian transcription factors (TFs) BMAL1 and CLOCK are required for the proliferation of metastatic mesenchymal stem-like (mMSL) triple-negative breast cancer (TNBC) cells. Using currently available small molecule modulators, we found that a stabilizer of cryptochrome 2 (CRY2), the direct repressor of BMAL1 and CLOCK transcriptional activity, synergizes with inhibitors of proteasome, which is required for BMAL1 and CLOCK function, to repress a transcriptional program comprising circadian cycling genes in mMSL TNBC cells. Omics analyses on drug-treated cells implied that this repression of transcription is mediated by the transcription factor binding sites (TFBSs) features in the cis-regulatory elements (CRE) of clock-controlled genes. Through a massive parallel reporter assay, we defined a set of CRE features that are potentially repressed by the specific drug combination. The identification of cis -element enrichment might serve as a new concept of defining and targeting tumor types through the modulation of cis -regulatory programs, and ultimately provide a new paradigm of therapy design for cancer types with unclear drivers like TNBC.

5.
Proc Natl Acad Sci U S A ; 121(7): e2316825121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38319968

RESUMEN

Climate change is a global concern for all life on our planet, including humans and plants. Plants' growth and development are significantly affected by abiotic stresses, including adverse temperature, inadequate or excess water availability, nutrient deficiency, and salinity. The circadian clock is a master regulator of numerous developmental and metabolic processes in plants. In an effort to identify new clock-related genes and outputs through bioinformatic analysis, we have revealed that CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) play a crucial role in regulating a wide range of abiotic stress responses and target ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING FACTOR3 (ABF3), a key transcription factor in the plant hormone Abscisic acid (ABA)-signaling pathway. Specifically, we found that CCA1 and LHY regulate the expression of ABF3 under diel conditions, as well as seed germination under salinity. Conversely, ABF3 controls the expression of core clock genes and orchestrates the circadian period in a stress-responsive manner. ABF3 delivers the stress signal to the central oscillator by binding to the promoter of CCA1 and LHY. Overall, our study uncovers the reciprocal regulation between ABF3 and CCA1/LHY and molecular mechanisms underlying the interaction between the circadian clock and abiotic stress. This finding may aid in developing molecular and genetic solutions for plants to survive and thrive in the face of climate change.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Humanos , Relojes Circadianos/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ácido Abscísico/metabolismo , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Factores de Transcripción/metabolismo
6.
J Biol Rhythms ; 39(1): 5-19, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37978840

RESUMEN

Collegiate athletes must satisfy the academic obligations common to all undergraduates, but they have the additional structural and social stressors of extensive practice time, competition schedules, and frequent travel away from their home campus. Clearly such stressors can have negative impacts on both their academic and athletic performances as well as on their health. These concerns are made more acute by recent proposals and decisions to reorganize major collegiate athletic conferences. These rearrangements will require more multi-day travel that interferes with the academic work and personal schedules of athletes. Of particular concern is additional east-west travel that results in circadian rhythm disruptions commonly called jet lag that contribute to the loss of amount as well as quality of sleep. Circadian misalignment and sleep deprivation and/or sleep disturbances have profound effects on physical and mental health and performance. We, as concerned scientists and physicians with relevant expertise, developed this white paper to raise awareness of these challenges to the wellbeing of our student-athletes and their co-travelers. We also offer practical steps to mitigate the negative consequences of collegiate travel schedules. We discuss the importance of bedtime protocols, the availability of early afternoon naps, and adherence to scheduled lighting exposure protocols before, during, and after travel, with support from wearables and apps. We call upon departments of athletics to engage with sleep and circadian experts to advise and help design tailored implementation of these mitigating practices that could contribute to the current and long-term health and wellbeing of their students and their staff members.


Asunto(s)
Ritmo Circadiano , Sueño , Humanos , Síndrome Jet Lag , Atletas , Estudiantes , Viaje
7.
Front Oncol ; 13: 1223208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601651

RESUMEN

E-boxes are important regulatory elements in the eukaryotic genome. Transcription factors can bind to E-boxes through their basic helix-loop-helix or zinc finger domain to regulate gene transcription. E-box-binding transcription factors (EBTFs) are important regulators of development and essential for physiological activities of the cell. The fundamental role of EBTFs in cancer has been highlighted by studies on the canonical oncogene MYC, yet many EBTFs exhibit common features, implying the existence of shared molecular principles of how they are involved in tumorigenesis. A comprehensive analysis of TFs that share the basic function of binding to E-boxes has been lacking. Here, we review the structure of EBTFs, their common features in regulating transcription, their physiological functions, and their mutual regulation. We also discuss their converging functions in cancer biology, their potential to be targeted as a regulatory network, and recent progress in drug development targeting these factors in cancer therapy.

8.
Neuro Oncol ; 25(11): 1932-1946, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37326042

RESUMEN

Glioblastoma (GBM) is the most prevalent malignant primary brain tumor, accounting for 14.2% of all diagnosed tumors and 50.1% of all malignant tumors, and the median survival time is approximately 8 months irrespective of whether a patient receives treatment without significant improvement despite expansive research (Ostrom QT, Price M, Neff C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019. Neurooncology. 2022; 24(suppl 5):v1-v95.). Recently, important roles for the circadian clock in GBM tumorigenesis have been reported. Positive regulators of circadian-controlled transcription, brain and muscle ARNT-like 1 (BMAL1), and circadian locomotor output cycles kaput (CLOCK), are highly expressed also in GBM and correlated with poor patient prognosis. BMAL1 and CLOCK promote the maintenance of GBM stem cells (GSCs) and the establishment of a pro-tumorigenic tumor microenvironment (TME), suggesting that targeting the core clock proteins may augment GBM treatment. Here, we review findings that highlight the critical role the circadian clock plays in GBM biology and the strategies by which the circadian clock can be leveraged for GBM treatment in the clinic moving forward.


Asunto(s)
Relojes Circadianos , Glioblastoma , Humanos , Proteínas CLOCK/metabolismo , Factores de Transcripción ARNTL/metabolismo , Encéfalo/metabolismo , Microambiente Tumoral
9.
bioRxiv ; 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36993677

RESUMEN

For plants adapted to bright light, a decrease in the amount of light received can be detrimental to their growth and survival. Consequently, in response to shade from surrounding vegetation, they initiate a suite of molecular and morphological changes known as the shade avoidance response (SAR) through which stems and petioles elongate in search for light. Under sunlight-night cycles, the plant's responsiveness to shade varies across the day, being maximal at dusk time. While a role for the circadian clock in this regulation has long been proposed, mechanistic understanding of how it is achieved is incomplete. Here we show that the clock component GIGANTEA (GI) directly interacts with the transcriptional regulator PHYTOCHROME INTERACTING FACTOR 7 (PIF7), a key player in the response to shade. GI represses PIF7 transcriptional activity and the expression of its target genes in response to shade, thereby fine-tuning the magnitude of the response to limiting light conditions. We find that, under light/dark cycles, this function of GI is required to adequately modulate the gating of the response to shade at dusk. Importantly, we also show that GI expression in epidermal cells is sufficient for proper SAR regulation.

10.
Proc Natl Acad Sci U S A ; 120(2): e2214829120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595671

RESUMEN

Hepatocellular carcinoma (HCC) remains a global health challenge whose incidence is growing worldwide. Previous evidence strongly supported the notion that the circadian clock controls physiological homeostasis of the liver and plays a key role in hepatocarcinogenesis. Despite the progress, cellular and molecular mechanisms underpinning this HCC-clock crosstalk remain unknown. Addressing this knowledge gap, we show here that although the human HCC cells Hep3B, HepG2, and Huh7 displayed variations in circadian rhythm profiles, all cells relied on the master circadian clock transcription factors, BMAL1 and CLOCK, for sustained cell growth. Down-regulating Bmal1 or Clock in the HCC cells induced apoptosis and arrested cell cycle at the G2/M phase. Mechanistically, we found that inhibiting Bmal1/Clock induced dysregulation of the cell cycle regulators Wee1 and p21 which cooperatively contribute to tumor cell death. Bmal1/Clock knockdown caused downregulation of Wee1 that led to apoptosis activation and upregulation of p21 which arrested the cell cycle at the G2/M phase. Collectively, our results suggest that the circadian clock regulators BMAL1 and CLOCK promote HCC cell proliferation by controlling Wee1 and p21 levels, thereby preventing apoptosis and cell cycle arrest. Our findings shed light on cellular impact of the clock proteins for maintaining HCC oncogenesis and provide proof-of-principle for developing cancer therapy based on modulation of the circadian clock.


Asunto(s)
Carcinoma Hepatocelular , Relojes Circadianos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Relojes Circadianos/genética , Proliferación Celular , Ciclo Celular , División Celular , Apoptosis
11.
J Cell Sci ; 135(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36093830

RESUMEN

The circadian clock is entrained to daily environmental cues. Integrin-linked signaling via actin cytoskeleton dynamics transduces physical niche cues from the extracellular matrix to myocardin-related transcription factor (MRTF)/serum response factor (SRF)-mediated transcription. The actin cytoskeleton organization and SRF-MRTF activity display diurnal oscillations. By interrogating disparate upstream events in the actin cytoskeleton-MRTF-A/SRF signaling cascade, we show that this pathway transduces extracellular niche cues to modulate circadian clock function. Pharmacological inhibition of MRTF-A/SRF by disrupting actin polymerization or blocking the ROCK kinase induced period lengthening with augmented clock amplitude, and genetic loss of function of Srf or Mrtfa mimicked the effects of treatment with actin-depolymerizing agents. In contrast, actin polymerization shortened circadian clock period and attenuated clock amplitude. Moreover, interfering with the cell-matrix interaction through blockade of integrin, inhibition of focal adhesion kinase (FAK, encoded by Ptk2) or attenuating matrix rigidity reduced the period length while enhancing amplitude. Mechanistically, we identified that the core clock repressors Per2, Nr1d1 and Nfil3 are direct transcriptional targets of MRTF-A/SRF in mediating actin dynamics-induced clock response. Collectively, our findings defined an integrin-actin cytoskeleton-MRTF/SRF pathway in linking clock entrainment with extracellular cues that might facilitate cellular adaptation to the physical niche environment.


Asunto(s)
Relojes Circadianos , Factor de Respuesta Sérica , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Relojes Circadianos/genética , Señales (Psicología) , Integrinas , Proteínas Nucleares , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Transactivadores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(40): e2203936119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161947

RESUMEN

The mammalian cryptochrome isoforms, CRY1 and CRY2, are core circadian clock regulators that work redundantly. Recent studies revealed distinct roles of these closely related homologs in clock output pathways. Isoform-selective control of CRY1 and CRY2 is critical for further understanding their redundant and distinct roles. KL001 was the first identified small-molecule CRY modulator that activates both CRY1 and CRY2. SHP656 is an orally available KL001 derivative and has shown efficacy in blood glucose control and inhibition of glioblastoma stem cell (GSC) growth in animal models. However, CRY isoform selectivity of SHP656 was uncharacterized, limiting understanding of the roles of CRY1 and CRY2. Here, we report the elucidation of CRY2 selectivity of SHP656. SHP656 lengthened cellular circadian period in a CRY2-dependent manner and selectively interacted with CRY2. By determining the X-ray crystal structure of CRY2 in complex with SHP656 and performing molecular dynamics simulations, we elucidated compound interaction mechanisms. SHP656 binding was compatible with the intrinsic CRY2 gatekeeper W417 "in" orientation and also a close "further in" conformation. Perturbation of W417 interaction with the lid loop resulted in a reduced effect of SHP656 on CRY2, supporting an important role of gatekeeper orientation in isoform selectivity. We also identified the R form of SHP656 (called SHP1703) as the active isomer. Treatment with SHP1703 effectively reduced GSC viability. Our results suggest a direct role of CRY2 in glioblastoma antitumorigenesis and provide a rationale for the selective modulation of CRY isoforms in the therapeutic treatment of glioblastoma and other circadian clock-related diseases.


Asunto(s)
Relojes Circadianos , Glioblastoma , Animales , Carbazoles , Ritmo Circadiano/fisiología , Criptocromos/metabolismo , Glioblastoma/tratamiento farmacológico , Mamíferos/metabolismo , Isoformas de Proteínas/genética , Sulfonamidas
13.
Plant Cell Physiol ; 63(4): 450-462, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35086143

RESUMEN

The circadian clock is an internal timekeeping system that governs about 24 h biological rhythms of a broad range of developmental and metabolic activities. The clocks in eukaryotes are thought to rely on lineage-specific transcriptional-translational feedback loops. However, the mechanisms underlying the basic transcriptional regulation events for clock function have not yet been fully explored. Here, through a combination of chemical biology and genetic approaches, we demonstrate that phosphorylation of RNA polymerase II by CYCLIN DEPENDENT KINASE C; 2 (CDKC;2) is required for maintaining the circadian period in Arabidopsis. Chemical screening identified BML-259, the inhibitor of mammalian CDK2/CDK5, as a compound lengthening the circadian period of Arabidopsis. Short-term BML-259 treatment resulted in decreased expression of most clock-associated genes. Development of a chemical probe followed by affinity proteomics revealed that BML-259 binds to CDKC;2. Loss-of-function mutations of cdkc;2 caused a long period phenotype. In vitro experiments demonstrated that the CDKC;2 immunocomplex phosphorylates the C-terminal domain of RNA polymerase II, and BML-259 inhibits this phosphorylation. Collectively, this study suggests that transcriptional activity maintained by CDKC;2 is required for proper period length, which is an essential feature of the circadian clock in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Animales , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Mamíferos/metabolismo , Fosforilación , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
14.
Nat Commun ; 12(1): 6350, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732735

RESUMEN

Transcription modulated by the circadian clock is diverse across cell types, underlying circadian control of peripheral metabolism and its observed perturbation in human diseases. We report that knockout of the lineage-specifying Hnf4a gene in mouse liver causes associated reductions in the genome-wide distribution of core clock component BMAL1 and accessible chromatin marks (H3K4me1 and H3K27ac). Ectopically expressing HNF4A remodels chromatin landscape and nucleates distinct tissue-specific BMAL1 chromatin binding events, predominantly in enhancer regions. Circadian rhythms are disturbed in Hnf4a knockout liver and HNF4A-MODY diabetic model cells. Additionally, the epigenetic state and accessibility of the liver genome dynamically change throughout the day, synchronized with chromatin occupancy of HNF4A and clustered expression of circadian outputs. Lastly, Bmal1 knockout attenuates HNF4A genome-wide binding in the liver, likely due to downregulated Hnf4a transcription. Our results may provide a general mechanism for establishing circadian rhythm heterogeneity during development and disease progression, governed by chromatin structure.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Cromatina/metabolismo , Ritmo Circadiano/fisiología , Factor Nuclear 4 del Hepatocito/metabolismo , Factores de Transcripción ARNTL/genética , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Epigenómica , Regulación de la Expresión Génica , Genoma , Factor Nuclear 4 del Hepatocito/genética , Histonas , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Mutación
15.
Cell Rep ; 35(5): 109054, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33951433

RESUMEN

The basic helix-loop-helix (bHLH) transcription factor PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) is a central regulator that promotes stem growth by activating growth-related gene expression during shade-avoidance responses. Studying the co-factors of PIF7 can facilitate understanding of the mechanism of PIFs and light signal transduction. Here, we describe the identification of two bHLH transcription factors, bHLH48 and bHLH60 (bHLH48/bHLH60), as essential partners for PIF7-dependent modulation of hypocotyl elongation and function downstream of phytochrome B. These two bHLH factors display DNA binding activity and interact with PIF7. Genetic analysis indicated that bHLH48/bHLH60 and PIF7 are interdependent in promoting hypocotyl elongation. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis identified the substantially overlapping downstream targets of bHLH60 and PIF7. Biochemical analysis revealed that bHLH48/bHLH60 enhance the DNA binding ability of PIF7. These results provide evidence that bHLH48/bHLH60 act as positive partners of PIF7 for mutual benefit in the regulation of hypocotyl elongation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fitocromo/metabolismo , Arabidopsis
16.
Oncogene ; 40(18): 3187-3200, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33846572

RESUMEN

Disruption of the cellular pathway modulating endogenous 24-h rhythms, referred to as "the circadian clock", has been recently proven to be associated with cancer risk, development, and progression. This pathway operates through a complex network of transcription-translation feedback loops generated by a set of interplaying proteins. The expression of core circadian clock genes is frequently dysregulated in human tumors; however, the specific effects and underlying mechanisms seem to vary depending on the cancer types and are not fully understood. In addition, specific oncogenes may differentially induce the dysregulation of the circadian clock in tumors. Pharmacological modulation of clock components has been shown to result in specific lethality in certain types of cancer cells, and thus holds great promise as a novel anti-cancer therapeutic approach. Here we present an overview of the rationale and current evidence for targeting the clock in cancer treatment.


Asunto(s)
Relojes Circadianos , Oncogenes , Humanos , Neoplasias
17.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443164

RESUMEN

The regulatory mechanisms of circadian rhythms have been studied primarily at the level of the transcription-translation feedback loops of protein-coding genes. Regulatory modules involving noncoding RNAs are less thoroughly understood. In particular, emerging evidence has revealed the important role of microRNAs (miRNAs) in maintaining the robustness of the circadian system. To identify miRNAs that have the potential to modulate circadian rhythms, we conducted a genome-wide miRNA screen using U2OS luciferase reporter cells. Among 989 miRNAs in the library, 120 changed the period length in a dose-dependent manner. We further validated the circadian regulatory function of an miRNA cluster, miR-183/96/182, both in vitro and in vivo. We found that all three members of this miRNA cluster can modulate circadian rhythms. Particularly, miR-96 directly targeted a core circadian clock gene, PER2. The knockout of the miR-183/96/182 cluster in mice showed tissue-specific effects on circadian parameters and altered circadian rhythms at the behavioral level. This study identified a large number of miRNAs, including the miR-183/96/182 cluster, as circadian modulators. We provide a resource for further understanding the role of miRNAs in the circadian network and highlight the importance of miRNAs as a genome-wide layer of circadian clock regulation.


Asunto(s)
Ritmo Circadiano/genética , Regulación de la Expresión Génica/genética , MicroARNs/metabolismo , Proteínas Circadianas Period/metabolismo , Animales , Línea Celular Tumoral , Ritmo Circadiano/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Genómica , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Pulmón/metabolismo , Pulmón/efectos de la radiación , Ratones , MicroARNs/genética , Familia de Multigenes , Especificidad de Órganos , Proteínas Circadianas Period/genética , Retina/metabolismo , Retina/efectos de la radiación , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/efectos de la radiación , Factores de Tiempo
18.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899117

RESUMEN

Night shift work increases risk of metabolic disorders, particularly obesity and insulin resistance. While the underlying mechanisms are unknown, evidence points to misalignment of peripheral oscillators causing metabolic disturbances. A pathway conveying such misalignment may involve exosome-based intercellular communication. Fourteen volunteers were assigned to a simulated day shift (DS) or night shift (NS) condition. After 3 days on the simulated shift schedule, blood samples were collected during a 24-h constant routine protocol. Exosomes were isolated from the plasma samples from each of the blood draws. Exosomes were added to naïve differentiated adipocytes, and insulin-induced pAkt/Akt expression changes were assessed. ChIP-Seq analyses for BMAL1 protein, mRNA microarrays and exosomal miRNA arrays combined with bioinformatics and functional effects of agomirs and antagomirs targeting miRNAs in NS and DS exosomal cargo were examined. Human adipocytes treated with exosomes from the NS condition showed altered Akt phosphorylation responses to insulin in comparison to those treated with exosomes from the DS condition. BMAL1 ChIP-Seq of exosome-treated adipocytes showed 42,037 binding sites in the DS condition and 5538 sites in the NS condition, with a large proportion of BMAL1 targets including genes encoding for metabolic regulators. A significant and restricted miRNA exosomal signature emerged after exposure to the NS condition. Among the exosomal miRNAs regulated differentially after 3 days of simulated NS versus DS, proof-of-concept validation of circadian misalignment signaling was demonstrated with hsa-mir-3614-5p. Exosomes from the NS condition markedly altered expression of key genes related to circadian rhythm in several cultured cell types, including adipocytes, myocytes, and hepatocytes, along with significant changes in 29 genes and downstream gene network interactions. Our results indicate that a simulated NS schedule leads to changes in exosomal cargo in the circulation. These changes promote reduction of insulin sensitivity of adipocytes in vitro and alter the expression of core clock genes in peripheral tissues. Circulating exosomal miRNAs may play an important role in metabolic dysfunction in NS workers by serving as messengers of circadian misalignment to peripheral tissues.


Asunto(s)
Biomarcadores/metabolismo , Ritmo Circadiano/fisiología , MicroARN Circulante/análisis , Exosomas/genética , Regulación de la Expresión Génica , Resistencia a la Insulina , Adipocitos/citología , Adipocitos/metabolismo , Adulto , Células Cultivadas , MicroARN Circulante/metabolismo , Femenino , Humanos , Masculino , ARN Mensajero , Transducción de Señal
19.
Cell Chem Biol ; 27(9): 1192-1198.e5, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32502390

RESUMEN

Cryptochrome 1 (CRY1) and CRY2 are core regulators of the circadian clock, and the development of isoform-selective modulators is important for the elucidation of their redundant and distinct functions. Here, we report the identification and functional characterization of a small-molecule modulator of the mammalian circadian clock that selectively controls CRY1. Cell-based circadian chemical screening identified a thienopyrimidine derivative KL201 that lengthened the period of circadian rhythms in cells and tissues. Functional assays revealed stabilization of CRY1 but not CRY2 by KL201. A structure-activity relationship study of KL201 derivatives in combination with X-ray crystallography of the CRY1-KL201 complex uncovered critical sites and interactions required for CRY1 regulation. KL201 bound to CRY1 in overlap with FBXL3, a subunit of ubiquitin ligase complex, and the effect of KL201 was blunted by knockdown of FBXL3. KL201 will facilitate isoform-selective regulation of CRY1 to accelerate chronobiology research and therapeutics against clock-related diseases.


Asunto(s)
Carbazoles/metabolismo , Ritmo Circadiano , Criptocromos/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Sitios de Unión , Carbazoles/química , Carbazoles/farmacología , Línea Celular Tumoral , Ritmo Circadiano/efectos de los fármacos , Criptocromos/química , Criptocromos/genética , Cristalografía por Rayos X , Proteínas F-Box/metabolismo , Genes Reporteros , Humanos , Simulación del Acoplamiento Molecular , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Unión Proteica , Relación Estructura-Actividad , Ubiquitinación
20.
Proc Natl Acad Sci U S A ; 117(24): 13792-13799, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32471952

RESUMEN

DELLA transcriptional regulators are central components in the control of plant growth responses to the environment. This control is considered to be mediated by changes in the metabolism of the hormones gibberellins (GAs), which promote the degradation of DELLAs. However, here we show that warm temperature or shade reduced the stability of a GA-insensitive DELLA allele in Arabidopsis thaliana Furthermore, the degradation of DELLA induced by the warmth preceded changes in GA levels and depended on the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). COP1 enhanced the degradation of normal and GA-insensitive DELLA alleles when coexpressed in Nicotiana benthamiana. DELLA proteins physically interacted with COP1 in yeast, mammalian, and plant cells. This interaction was enhanced by the COP1 complex partner SUPRESSOR OF phyA-105 1 (SPA1). The level of ubiquitination of DELLA was enhanced by COP1 and COP1 ubiquitinated DELLA proteins in vitro. We propose that DELLAs are destabilized not only by the canonical GA-dependent pathway but also by COP1 and that this control is relevant for growth responses to shade and warm temperature.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/química , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Estabilidad Proteica , Proteolisis , Proteínas Represoras/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...