Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Infect Genet Evol ; 124: 105667, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39251076

RESUMEN

In April 2023, an outbreak of acute hepatitis was reported amongst internally displaced persons in the Nazareth community of South Sudan. IgM serology-based screening suggested the likely etiologic agent to be Hepatitis E virus (HEV). In this study, plasma specimens collected from anti-HEV IgM-positive cases were subjected to additional RT-qPCR testing and sequencing of extracted nucleic acids, resulting in the recovery of five full and eight partial HEV genomes. Maximum likelihood phylogenetic reconstruction confirmed the genomes belong to HEV genotype 1. Using distance-based methods, we show that genotype 1 is best split into three sub-genotypes instead of the previously proposed seven, and that these sub-genotypes are geographically restricted. The South Sudanese sequences confidently cluster within sub-genotype 1e, endemic to northeast, central, and east Africa. Bayesian Inference of phylogeny incorporating sampling dates shows that this new outbreak is not directly descended from other recent local outbreaks for which sequence data is available. However, the analysis suggests that sub-genotype 1e has been consistently and cryptically circulating locally for at least the past half century and that the known outbreaks are often not directly descended from one another. The ongoing presence of HEV, combined with poor sanitation and hygiene in the conflict-affected areas in the region, place vulnerable populations at risk for infection and its more serious effects, including progression to fulminant hepatitis.


Asunto(s)
Brotes de Enfermedades , Genotipo , Virus de la Hepatitis E , Hepatitis E , Filogenia , Humanos , Hepatitis E/epidemiología , Hepatitis E/virología , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/clasificación , Sudán del Sur/epidemiología , Sudán/epidemiología , África Oriental/epidemiología , Genoma Viral , Teorema de Bayes , Masculino
2.
Shock ; 62(3): 336-343, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39012778

RESUMEN

ABSTRACT: Background: Understanding of immune cell phenotypes associated with inflammatory and immunosuppressive host responses in sepsis is imprecise, particularly in low- and middle-income countries, where the global sepsis burden is concentrated. In these settings, elucidation of clinically relevant immunophenotypes is necessary to determine the relevance of emerging therapeutics and refine mechanistic investigations of sepsis immunopathology. Methods: In a prospective cohort of adults hospitalized with suspected sepsis in Uganda (N = 43; median age 46 years [IQR 36-59], 24 [55.8%] living with HIV, 16 [37.2%] deceased at 60 days), we combined high-dimensional flow cytometry with unsupervised machine learning and manual gating to define peripheral immunophenotypes associated with increased risk of 60-day mortality. Results: Patients who died showed heterogeneous expansion of polymorphonuclear myeloid-derived suppressor cells, with increased and decreased abundance of CD16 - PD-L1 dim and CD16 bright PD-L1 bright subsets, respectively, significantly associated with mortality. While differences between CD16 - PD-L1 dim cell abundance and mortality risk appeared consistent throughout the course of illness, those for the CD16 bright PD-L1 bright subset were more pronounced early after illness onset. Independent of HIV co-infection, depletion of CD4 + T cells, dendritic cells, and CD56 - CD16 bright NK cells were significantly associated with mortality risk, as was expansion of immature, CD56 + CD16 - CD11c + NK cells. Abundance of T cells expressing inhibitory checkpoint proteins (PD-1, CTLA-4, LAG-3) was similar between patients who died versus those who survived. Conclusions: This is the first study to define high-risk immunophenotypes among adults with sepsis in sub-Saharan Africa, an immunologically distinct region where biologically informed treatment strategies are needed. More broadly, our findings highlight the clinical importance and complexity of myeloid derived suppressor cell expansion during sepsis and support emerging data that suggest a host-protective role for PD-L1 myeloid checkpoints in acute critical illness.


Asunto(s)
Inmunofenotipificación , Células Supresoras de Origen Mieloide , Sepsis , Humanos , Uganda/epidemiología , Células Supresoras de Origen Mieloide/inmunología , Persona de Mediana Edad , Femenino , Adulto , Masculino , Sepsis/inmunología , Sepsis/mortalidad , Sepsis/sangre , Estudios Prospectivos , Antígeno B7-H1/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Citometría de Flujo
3.
PLoS Negl Trop Dis ; 18(6): e0011712, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38870214

RESUMEN

BACKGROUND: Chikungunya virus (CHIKV) and O'nyong nyong virus (ONNV) are phylogenetically related alphaviruses in the Semliki Forest Virus (SFV) antigenic complex of the Togaviridae family. There are limited data on the circulation of these two viruses in Burkina Faso. The aim of our study was to assess their circulation in the country by determining seroprevalence to each of the viruses in blood donor samples and by retrospective molecular and serological testing of samples collected as part of national measles and rubella surveillance. METHODOLOGY/PRINCIPAL FINDINGS: All blood donor samples were analyzed on the Luminex platform using CHIKV and ONNV E2 antigens. Patient samples collected during national measles-rubella surveillance were screened by an initial ELISA for CHIKV IgM (CHIKjj Detect IgM ELISA) at the national laboratory. The positive samples were then analyzed by a second ELISA test for CHIKV IgM (CDC MAC-ELISA) at the reference laboratory. Finally, samples that had IgM positive results for both ELISA tests and had sufficient residual volume were tested by plaque reduction neutralization testing (PRNT) for CHIKV and ONNV. These same patient samples were also analyzed by rRT-PCR for CHIKV. Among the blood donor specimens, 55.49% of the samples were positive for alphaviruses including both CHIKV and ONNV positive samples. Among patient samples collected as part of national measles and rubella surveillance, 3.09% were IgM positive for CHIKV, including 2.5% confirmed by PRNT. PRNT failed to demonstrate any ONNV infections in these samples. No samples tested by RT-qPCR. had detectable CHIKV RNA. CONCLUSIONS/SIGNIFICANCE: Our results suggest that CHIKV and ONNV have been circulating in the population of Burkina Faso and may have been confused with malaria, dengue fever or other febrile diseases such as measles or rubella. Our study underscores the necessity to enhance arbovirus surveillance systems in Burkina Faso.


Asunto(s)
Infecciones por Alphavirus , Anticuerpos Antivirales , Virus Chikungunya , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina M , Virus O'nyong-nyong , Humanos , Burkina Faso/epidemiología , Virus Chikungunya/genética , Virus Chikungunya/inmunología , Virus Chikungunya/aislamiento & purificación , Anticuerpos Antivirales/sangre , Estudios Seroepidemiológicos , Inmunoglobulina M/sangre , Masculino , Femenino , Adulto , Virus O'nyong-nyong/genética , Virus O'nyong-nyong/aislamiento & purificación , Infecciones por Alphavirus/epidemiología , Infecciones por Alphavirus/virología , Infecciones por Alphavirus/diagnóstico , Infecciones por Alphavirus/sangre , Adulto Joven , Adolescente , Estudios Retrospectivos , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/virología , Fiebre Chikungunya/sangre , Fiebre Chikungunya/diagnóstico , Persona de Mediana Edad , Donantes de Sangre , Niño , Preescolar , Coinfección/epidemiología , Coinfección/virología
4.
Health Secur ; 22(3): 223-234, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38407830

RESUMEN

Pathogens threaten human lives and disrupt economies around the world. This has been clearly illustrated by the current COVID-19 pandemic and outbreaks in livestock and food crops. To manage pathogen emergence and spread, cooperative engagement programs develop and strengthen biosafety, biosecurity, and biosurveillance capabilities among local researchers to detect pathogens. In this case study, we describe the efforts of a collaboration between the Los Alamos National Laboratory and the Uganda Virus Research Institute, the primary viral diagnostic laboratory in Uganda, to implement and ensure the sustainability of sequencing for biosurveillance. We describe the process of establishing this capability along with the lessons learned from both sides of the partnership to inform future cooperative engagement efforts in low- and middle-income countries. We found that by strengthening sequencing capabilities at the Uganda Virus Research Institute before the COVID-19 pandemic, the institute was able to successfully sequence SARS-CoV-2 samples and provide data to the scientific community. We highlight the need to strengthen and sustain capabilities through in-country training, collaborative research projects, and trust.


Asunto(s)
COVID-19 , Brotes de Enfermedades , SARS-CoV-2 , Uganda/epidemiología , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Estados Unidos/epidemiología , Brotes de Enfermedades/prevención & control , Cooperación Internacional , Pandemias/prevención & control , Conducta Cooperativa , Laboratorios/organización & administración
5.
AMA J Ethics ; 26(2): E153-161, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306205

RESUMEN

Bats are diverse mammals that are globally distributed and ecologically critical, yet some bat species are associated with disease agents that have severe consequences for human health. Disease outbreak responses require interdisciplinary knowledge of bat-associated pathogens and microbial transmission patterns. Health promotion requires close, collaborative attention to the needs, vulnerabilities, and interests of diverse stakeholders, including the public and professionals in public health, conservation, ecology, social science, communication, and policy. This article describes a successful One Health engagement among such stakeholders and partners looking to motivate both bat-human ecology preservation and viral disease management in Uganda.


Asunto(s)
Quirópteros , Salud Única , Animales , Humanos , Uganda , Ecología , Salud Pública
6.
Nat Commun ; 15(1): 1475, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368384

RESUMEN

Little is known about the pathobiology of SARS-CoV-2 infection in sub-Saharan Africa, where severe COVID-19 fatality rates are among the highest in the world and the immunological landscape is unique. In a prospective cohort study of 306 adults encompassing the entire clinical spectrum of SARS-CoV-2 infection in Uganda, we profile the peripheral blood proteome and transcriptome to characterize the immunopathology of COVID-19 across multiple phases of the pandemic. Beyond the prognostic importance of myeloid cell-driven immune activation and lymphopenia, we show that multifaceted impairment of host protein synthesis and redox imbalance define core biological signatures of severe COVID-19, with central roles for IL-7, IL-15, and lymphotoxin-α in COVID-19 respiratory failure. While prognostic signatures are generally consistent in SARS-CoV-2/HIV-coinfection, type I interferon responses uniquely scale with COVID-19 severity in persons living with HIV. Throughout the pandemic, COVID-19 severity peaked during phases dominated by A.23/A.23.1 and Delta B.1.617.2/AY variants. Independent of clinical severity, Delta phase COVID-19 is distinguished by exaggerated pro-inflammatory myeloid cell and inflammasome activation, NK and CD8+ T cell depletion, and impaired host protein synthesis. Combining these analyses with a contemporary Ugandan cohort of adults hospitalized with influenza and other severe acute respiratory infections, we show that activation of epidermal and platelet-derived growth factor pathways are distinct features of COVID-19, deepening translational understanding of mechanisms potentially underlying SARS-CoV-2-associated pulmonary fibrosis. Collectively, our findings provide biological rationale for use of broad and targeted immunotherapies for severe COVID-19 in sub-Saharan Africa, illustrate the relevance of local viral and host factors to SARS-CoV-2 immunopathology, and highlight underemphasized yet therapeutically exploitable immune pathways driving COVID-19 severity.


Asunto(s)
COVID-19 , Coinfección , Infecciones por VIH , Adulto , Humanos , SARS-CoV-2 , Coinfección/epidemiología , Uganda/epidemiología , Pandemias , Estudios Prospectivos , Infecciones por VIH/complicaciones , Infecciones por VIH/epidemiología
7.
PLoS One ; 19(1): e0287272, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38265993

RESUMEN

BACKGROUND: Significant milestones have been made in the development of COVID19 diagnostics Technologies. Government of the republic of Uganda and the line Ministry of Health mandated Uganda Virus Research Institute to ensure quality of COVID19 diagnostics. Re-testing was one of the methods initiated by the UVRI to implement External Quality assessment of COVID19 molecular diagnostics. METHOD: participating laboratories were required by UVRI to submit their already tested and archived nasopharyngeal samples and corresponding meta data. These were then re-tested at UVRI using the WHO Berlin protocol, the UVRI results were compared to those of the primary testing laboratories in order to ascertain performance agreement for the qualitative & quantitative results obtained. Ms Excel window 12 and GraphPad prism ver 15 was used in the analysis. Bar graphs, pie charts and line graphs were used to compare performance agreement between the reference Laboratory and primary testing Laboratories. RESULTS: Eleven (11) Ministry of Health/Uganda Virus Research Institute COVID19 accredited laboratories participated in the re-testing of quality control samples. 5/11 (45%) of the primary testing laboratories had 100% performance agreement with that of the National Reference Laboratory for the final test result. Even where there was concordance in the final test outcome (negative or positive) between UVRI and primary testing laboratories, there were still differences in CT values. The differences in the Cycle Threshold (CT) values were insignificant except for Tenna & Pharma Laboratory and the UVRI(p = 0.0296). The difference in the CT values were not skewed to either the National reference Laboratory(UVRI) or the primary testing laboratory but varied from one laboratory to another. In the remaining 6/11 (55%) laboratories where there were discrepancies in the aggregate test results, only samples initially tested and reported as positive by the primary laboratories were tested and found to be false positives by the UVRI COVID19 National Reference Laboratory. CONCLUSION: False positives were detected from public, private not for profit and private testing laboratories in almost equal proportion. There is need for standardization of molecular testing platforms in Uganda. There is also urgent need to improve on the Laboratory quality management systems of the molecular testing laboratories in order to minimize such discrepancies.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , Uganda , Reacción en Cadena en Tiempo Real de la Polimerasa , Prueba de COVID-19 , Academias e Institutos
8.
Crit Care Med ; 52(3): 475-482, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37548511

RESUMEN

OBJECTIVES: In high-income countries (HICs), sepsis endotypes defined by distinct pathobiological mechanisms, mortality risks, and responses to corticosteroid treatment have been identified using blood transcriptomics. The generalizability of these endotypes to low-income and middle-income countries (LMICs), where the global sepsis burden is concentrated, is unknown. We sought to determine the prevalence, prognostic relevance, and immunopathological features of HIC-derived transcriptomic sepsis endotypes in sub-Saharan Africa. DESIGN: Prospective cohort study. SETTING: Public referral hospital in Uganda. PATIENTS: Adults ( n = 128) hospitalized with suspected sepsis. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Using whole-blood RNA sequencing data, we applied 19-gene and 7-gene classifiers derived and validated in HICs (SepstratifieR) to assign patients to one of three sepsis response signatures (SRS). The 19-gene classifier assigned 30 (23.4%), 92 (71.9%), and 6 (4.7%) patients to SRS-1, SRS-2, and SRS-3, respectively, the latter of which is designed to capture individuals transcriptionally closest to health. SRS-1 was defined biologically by proinflammatory innate immune activation and suppressed natural killer-cell, T-cell, and B-cell immunity, whereas SRS-2 was characterized by dampened innate immune activation, preserved lymphocyte immunity, and suppressed transcriptional responses to corticosteroids. Patients assigned to SRS-1 were predominantly (80.0% [24/30]) persons living with HIV with advanced immunosuppression and frequent tuberculosis. Mortality at 30-days differed significantly by endotype and was highest (48.1%) in SRS-1. Agreement between 19-gene and 7-gene SRS assignments was poor (Cohen's kappa 0.11). Patient stratification was suboptimal using the 7-gene classifier with 15.1% (8/53) of individuals assigned to SRS-3 deceased at 30-days. CONCLUSIONS: Sepsis endotypes derived in HICs share biological and clinical features with those identified in sub-Saharan Africa, with major differences in host-pathogen profiles. Our findings highlight the importance of context-specific sepsis endotyping, the generalizability of conserved biological signatures of critical illness across disparate settings, and opportunities to develop more pathobiologically informed sepsis treatment strategies in LMICs.


Asunto(s)
Sepsis , Transcriptoma , Adulto , Humanos , Estudios Prospectivos , Uganda/epidemiología , Perfilación de la Expresión Génica , Corticoesteroides
9.
Microbiol Spectr ; 11(6): e0132823, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37811997

RESUMEN

IMPORTANCE: Respiratory pathogens cause high rates of morbidity and mortality globally and have high pandemic potential. During the SARS-CoV-2 pandemic, influenza surveillance was significantly interrupted because of resources being diverted to SARS-CoV-2 testing and sequencing. Based on recommendations from the World Health Organization, the Uganda Virus Research Institute, National Influenza Center laboratory integrated SARS-CoV-2 testing and genomic sequencing into the influenza surveillance program. We describe the results of influenza and SARS-CoV-2 testing of samples collected from 16 sentinel surveillance sites located throughout Uganda as well as SARS-CoV-2 testing and sequencing in other health centers. The surveillance system showed that both SARS-CoV-2 and influenza can be monitored in communities at the national level. The integration of SARS-CoV-2 detection and genomic surveillance into the influenza surveillance program will help facilitate the timely release of SARS-CoV-2 information for COVID-19 pandemic mitigation and provide important information regarding the persistent threat of influenza.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , SARS-CoV-2/genética , Vigilancia de Guardia , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , Uganda/epidemiología , Pandemias
10.
Int J Infect Dis ; 136: 49-56, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37683720

RESUMEN

OBJECTIVES: Understanding the immune response in very mild and asymptomatic COVID-19 is crucial for developing effective vaccines and immunotherapies, yet remains poorly characterized. This longitudinal study examined the evolution of interferon (IFN)-γ responses to SARS-CoV-2 peptides in 109 asymptomatic or mildly symptomatic Ugandan COVID-19 patients across 365 days and explored their association with antibody generation. METHODS: T-cell responses to spike-containing clusters of differentiation (CD4)-S and CD8 nCoV-A (CD8-A) megapools, and the non-spike CD4-R and CD8 nCoV-B (CD8-B) megapools, were assessed and correlated with demographic and temporal variables. RESULTS: SARS-CoV-2-specific IFN-γ responses were consistently detected in all peptide pools and time points, with the spike-targeted response exhibiting higher potency and durability than the non-spike responses. Throughout the entire 365-day infection timeline, a robust positive correlation was observed between CD4 T-cell responses to the spike-derived peptides and anti-spike immunoglobulin G antibody levels, underscoring their interdependent dynamics in the immune response against SARS-CoV-2; in contrast, CD8 T-cell responses exhibited no such correlation, highlighting their distinctive, autonomous role in defense. No meaningful variations in complete blood count parameters were observed between individuals with COVID-19 infection and those without, indicating clinical insignificance. CONCLUSIONS: This study highlights the dominant role of spike-directed T-cell responses in mild and asymptomatic disease and provides crucial longitudinal data from Sub-Saharan African settings. The findings provide valuable insights into the dynamics of T-cell responses and their potential significance in developing effective strategies for combating COVID-19.


Asunto(s)
COVID-19 , Humanos , Estudios Longitudinales , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2 , Linfocitos T CD8-positivos , Interferón gamma , Anticuerpos Antivirales
11.
Sci Rep ; 13(1): 5516, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37015946

RESUMEN

Genetic characterisation of circulating influenza viruses directs annual vaccine strain selection and mitigation of infection spread. We used next-generation sequencing to locally generate whole genomes from 116 A(H1N1)pdm09 and 118 A(H3N2) positive patient swabs collected across Uganda between 2010 and 2018. We recovered sequences from 92% (215/234) of the swabs, 90% (193/215) of which were whole genomes. The newly-generated sequences were genetically and phylogenetically compared to the WHO-recommended vaccines and other Africa strains sampled since 1994. Uganda strain hemagglutinin (n = 206), neuraminidase (n = 207), and matrix protein (MP, n = 213) sequences had 95.23-99.65%, 95.31-99.79%, and 95.46-100% amino acid similarity to the 2010-2020 season vaccines, respectively, with several mutated hemagglutinin antigenic, receptor binding, and N-linked glycosylation sites. Uganda influenza type-A virus strains sequenced before 2016 clustered uniquely while later strains mixed with other Africa and global strains. We are the first to report novel A(H1N1)pdm09 subclades 6B.1A.3, 6B.1A.5(a,b), and 6B.1A.6 (± T120A) that circulated in Eastern, Western, and Southern Africa in 2017-2019. Africa forms part of the global influenza ecology with high viral genetic diversity, progressive antigenic drift, and local transmissions. For a continent with inadequate health resources and where social distancing is unsustainable, vaccination is the best option. Hence, African stakeholders should prioritise routine genome sequencing and analysis to direct vaccine selection and virus control.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Subtipo H1N1 del Virus de la Influenza A/genética , Hemaglutininas , Subtipo H3N2 del Virus de la Influenza A , Uganda/epidemiología , Filogenia , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Vacunas contra la Influenza/genética , Organización Mundial de la Salud
12.
Front Immunol ; 14: 1152522, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006272

RESUMEN

Introduction: Understanding how spike (S)-, nucleoprotein (N)-, and RBD-directed antibody responses evolved in mild and asymptomatic COVID-19 in Africa and their interactions with SARS-CoV-2 might inform development of targeted treatments and vaccines. Methods: Here, we used a validated indirect in-house ELISA to characterise development and persistence of S- and N-directed IgG, IgM, and IgA antibody responses for 2430 SARS-CoV-2 rt-PCR-diagnosed Ugandan specimens from 320 mild and asymptomatic COVID-19 cases, 50 uninfected contacts, and 54 uninfected non-contacts collected weekly for one month, then monthly for 28 months. Results: During acute infection, asymptomatic patients mounted a faster and more robust spike-directed IgG, IgM, and IgA response than those with mild symptoms (Wilcoxon rank test, p-values 0.046, 0.053, and 0.057); this was more pronounced in males than females. Spike IgG antibodies peaked between 25 and 37 days (86.46; IQR 29.47-242.56 BAU/ml), were significantly higher and more durable than N- and RBD IgG antibodies and lasted for 28 months. Anti-spike seroconversion rates consistently exceeded RBD and nucleoprotein rates. Spike- and RBD-directed IgG antibodies were positively correlated until 14 months (Spearman's rank correlation test, p-values 0.0001 to 0.05), although RBD diminished faster. Significant anti-spike immunity persisted without RBD. 64% and 59% of PCR-negative, non-infected non-contacts and suspects, exhibited baseline SARS-CoV-2 N-IgM serological cross-reactivity, suggesting undetected exposure or abortive infection. N-IgG levels waned after 787 days, while N-IgM levels remained undetectable throughout. Discussion: Lower N-IgG seroconversion rates and the absence of N-IgM indicate that these markers substantially underestimate the prior exposure rates. Our findings provide insights into the development of S-directed antibody responses in mild and asymptomatic infections, with varying degrees of symptoms eliciting distinct immune responses, suggesting distinct pathogenic pathways. These longer-lasting data inform vaccine design, boosting strategies, and surveillance efforts in this and comparable settings.


Asunto(s)
COVID-19 , Masculino , Femenino , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Uganda/epidemiología , Anticuerpos Antivirales , Inmunoglobulina G , Inmunoglobulina M , Inmunoglobulina A
13.
IJID Reg ; 6: 171-176, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36915800

RESUMEN

Background: Arboviruses are endemic in Uganda; however, little is known about their epidemiology, seasonality and spatiotemporal distribution. Our study sought to provide information on arbovirus outbreaks from acute clinical presentations. Methods: Immunoglobulin M (IgM) and confirmatory Plaque Reduction Neutralisation Test (PRNT) results for arbovirus diagnosis of samples collected from patients attending sentinel sites from 2016-19 were analysed retrospectively. Demographic data were analysed with SaTScan and SPSS software to determine the epidemiology and spatiotemporal distribution of arboviruses. Results: Arbovirus activity peaked consistently during March-May rainy seasons. Overall, arbovirus seroprevalence was 9.5%. Of 137 IgM positives, 52.6% were confirmed by PRNT, of which 73.6% cases were observed in central Uganda with Yellow Fever Virus had the highest prevalence (27.8%). The 5-14 age group were four times more likely to be infected with an arbovirus p=0.003, 4.1 (95% CI 1.3-12.3). Significant arboviral activity was observed among outdoor workers(p=0.05) . Spatiotemporal analysis indicated arboviral activity in 23 of the 85 districts analysed.. Interpretation: Our study shows that arbovirus activity peaks during the March-May rainy season and highlights the need for YFV mass vaccination to reduce the clinical burden of arboviruses transmitted within the region.

14.
Am J Trop Med Hyg ; 108(3): 619-626, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36646071

RESUMEN

The global burden of sepsis is concentrated in sub-Saharan Africa (SSA), where epidemic HIV and unique pathogen diversity challenge the effective management of severe infections. In this context, patient stratification based on biomarkers of a dysregulated host response may identify subgroups more likely to respond to targeted immunomodulatory therapeutics. In a prospective cohort of adults hospitalized with suspected sepsis in Uganda, we applied machine learning methods to develop a prediction model for 30-day mortality that integrates physiology-based risk scores with soluble biomarkers reflective of key domains of sepsis immunopathology. After model evaluation and internal validation, whole-blood RNA sequencing data were analyzed to compare biological pathway enrichment and inferred immune cell profiles between patients assigned differential model-based risks of mortality. Of 260 eligible adults (median age, 32 years; interquartile range, 26-43 years; 59.2% female, 53.9% living with HIV), 62 (23.8%) died by 30 days after hospital discharge. Among 14 biomarkers, soluble tumor necrosis factor receptor 1 (sTNFR1) and angiopoietin 2 (Ang-2) demonstrated the greatest importance for mortality prediction in machine learning models. A clinicomolecular model integrating sTNFR1 and Ang-2 with the Universal Vital Assessment (UVA) risk score optimized 30-day mortality prediction across multiple performance metrics. Patients assigned to the high-risk, UVA-based clinicomolecular subgroup exhibited a transcriptional profile defined by proinflammatory innate immune and necroptotic pathway activation, T-cell exhaustion, and expansion of key immune cell subsets including regulatory and gamma-delta T cells. Clinicomolecular stratification of adults with suspected sepsis in Uganda enhanced 30-day mortality prediction and identified a high-risk subgroup with a therapeutically targetable immunological profile. Further studies are needed to advance pathobiologically informed sepsis management in SSA.


Asunto(s)
Infecciones por VIH , Sepsis , Humanos , Adulto , Femenino , Masculino , Proyectos Piloto , Estudios Prospectivos , Uganda/epidemiología , Biomarcadores , Infecciones por VIH/epidemiología
15.
J Acquir Immune Defic Syndr ; 93(1): 79-85, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36701194

RESUMEN

BACKGROUND: The immunopathology of disseminated HIV-associated tuberculosis (HIV/TB), a leading cause of critical illness and death among persons living with HIV in sub-Saharan Africa, is incompletely understood. Reflective of hematogenously disseminated TB, detection of lipoarabinomannan (LAM) in urine is associated with greater bacillary burden and poor outcomes in adults with HIV/TB. METHODS: We determined the relationship between detection of urine TB-LAM, organ dysfunction, and host immune responses in a prospective cohort of adults hospitalized with severe HIV/TB in Uganda. Generalized additive models were used to analyze the association between urine TB-LAM grade and concentrations of 14 soluble immune mediators. Whole-blood RNA-sequencing data were used to compare transcriptional profiles between patients with high- vs. low-grade TB-LAM results. RESULTS: Among 157 hospitalized persons living with HIV, 40 (25.5%) had positive urine TB-LAM testing. Higher TB-LAM grade was associated with more severe physiologic derangement, organ dysfunction, and shock. Adjusted generalized additive models showed that higher TB-LAM grade was significantly associated with higher concentrations of mediators reflecting proinflammatory innate and T-cell activation and chemotaxis (IL-8, MIF, MIP-1ß/CCL4, and sIL-2Ra/sCD25). Transcriptionally, patients with higher TB-LAM grades demonstrated multifaceted impairment of antibacterial defense including reduced expression of genes encoding cytotoxic and autophagy-related proteins and impaired cross-talk between innate and cell-mediated immune effectors. CONCLUSIONS: Our findings add to emerging data suggesting pathobiological relationships between LAM, TB dissemination, innate cell activation, and evasion of host immunity in severe HIV/TB. Further translational studies are needed to elucidate the role for immunomodulatory therapies, in addition to optimized anti-TB treatment, in this often critically ill population.


Asunto(s)
Infecciones por VIH , Tuberculosis , Humanos , Adulto , Infecciones por VIH/epidemiología , Estudios Prospectivos , Uganda , Insuficiencia Multiorgánica/complicaciones , Tuberculosis/complicaciones , Lipopolisacáridos/orina , Inmunidad Innata , Sensibilidad y Especificidad
16.
Am J Trop Med Hyg ; 108(1): 161-164, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36410326

RESUMEN

After confirmation of two human cases of Rift Valley fever (RVF) in March 2016 in the Kabale district of Uganda, an entomological investigation was conducted with a focus on mosquito species composition and abundance of known and potential mosquito vector species, and virus testing to identify species most likely involved in Rift Valley fever virus transmission. This information could be used to forecast risk and facilitate improvement of prevention and response tools for use in preventing or controlling future outbreaks. From these collections, two virus isolates were obtained, one each from a pool of Aedes tricholabis and Ae. gibbinsi. Next-generation sequencing identified both isolates as Wesselsbron virus, family Flaviviridae, a neglected arbovirus of economic importance. These are the first reported Wesselsbron virus isolates from Uganda since 1966.


Asunto(s)
Aedes , Flavivirus , Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Animales , Humanos , Filogenia , Uganda/epidemiología , Brotes de Enfermedades/prevención & control
17.
AIDS ; 37(2): 233-245, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36355913

RESUMEN

BACKGROUND: The global burden of sepsis is concentrated in high HIV-burden settings in sub-Saharan Africa (SSA). Despite this, little is known about the immunopathology of sepsis in persons with HIV (PWH) in the region. We sought to determine the influence of HIV on host immune responses and organ dysfunction among adults hospitalized with suspected sepsis in Uganda. DESIGN: Prospective cohort study. METHODS: We compared organ dysfunction and 30-day outcome profiles of PWH and those without HIV. We quantified 14 soluble immune mediators, reflective of key domains of sepsis immunopathology, and performed whole-blood RNA-sequencing on samples from a subset of patients. We used propensity score methods to match PWH and those without HIV by demographics, illness duration, and clinical severity, and compared immune mediator concentrations and gene expression profiles across propensity score-matched groups. RESULTS: Among 299 patients, 157 (52.5%) were PWH (clinical stage 3 or 4 in 80.3%, 67.7% with known HIV on antiretroviral therapy). PWH presented with more severe physiologic derangement and shock, and had higher 30-day mortality (34.5% vs. 10.2%; P  < 0.001). Across propensity score-matched groups, PWH exhibited greater pro-inflammatory immune activation, including upregulation of interleukin (IL)-6, IL-8, IL-15, IL-17 and HMGB1 signaling, with concomitant T-cell exhaustion, prothrombotic pathway activation, and angiopoeitin-2-related endothelial dysfunction. CONCLUSIONS: Sepsis-related organ dysfunction and mortality in Uganda disproportionately affect PWH, who demonstrate exaggerated activation of multiple immunothrombotic and metabolic pathways implicated in sepsis pathogenesis. Further investigations are needed to refine understanding of sepsis immunopathology in PWH, particularly mechanisms amenable to therapeutic manipulation.


Asunto(s)
Infecciones por VIH , Sepsis , Humanos , Adulto , Infecciones por VIH/complicaciones , Insuficiencia Multiorgánica/complicaciones , Estudios Prospectivos , Uganda/epidemiología , Sepsis/complicaciones , Interleucina-6
19.
Science ; 378(6623): eadd8737, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36454863

RESUMEN

The geographic and evolutionary origins of the SARS-CoV-2 Omicron variant (BA.1), which was first detected mid-November 2021 in Southern Africa, remain unknown. We tested 13,097 COVID-19 patients sampled between mid-2021 to early 2022 from 22 African countries for BA.1 by real-time RT-PCR. By November-December 2021, BA.1 had replaced the Delta variant in all African sub-regions following a South-North gradient, with a peak Rt of 4.1. Polymerase chain reaction and near-full genome sequencing data revealed genetically diverse Omicron ancestors already existed across Africa by August 2021. Mutations, altering viral tropism, replication and immune escape, gradually accumulated in the spike gene. Omicron ancestors were therefore present in several African countries months before Omicron dominated transmission. These data also indicate that travel bans are ineffective in the face of undetected and widespread infection.

20.
Microbiol Resour Announc ; 11(12): e0069222, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36326501

RESUMEN

Despite causing numerous large outbreaks in the 20th century, few isolates of o'nyong nyong virus (ONNV) have been fully sequenced. Here, we report the complete genome sequence of an isolate of ONNV obtained from a febrile patient in northwest Uganda in 2017, designated ONNV UVRI0804.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...