Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 6445, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081065

RESUMEN

The retina has the greatest metabolic demand in the body particularly in dark adaptation when its sensitivity is enhanced. This requires elevated level of perfusion to sustain mitochondrial activity. However, mitochondrial performance declines with age leading to reduced adaptive ability. We assessed human retina metabolism in vivo using broad band near-infrared spectroscopy (bNIRS), which records colour changes in mitochondria and blood as retinal metabolism shifts in response to changes in environmental luminance. We demonstrate a significant sustained rise in mitochondrial oxidative metabolism in the first 3 min of darkness in subjects under 50 years old. This was not seen in those over 50 years. Choroidal oxygenation declines in < 50 s as mitochondrial metabolism increases, but gradually rises in the > 50 s. Significant group differences in blood oxygenation are apparent in the first 6 min, consistent with mitochondrial demand leading hemodynamic changes. A greater coupling between mitochondrial oxidative metabolism with hemodynamics is revealed in subjects older than 50, possibly due to reduced capacity in the older retina. Rapid in vivo assessment of retinal metabolism with bNIRS provides a route to understanding fundamental physiology and early identification of retinal disease before pathology is established.


Asunto(s)
Retina , Enfermedades de la Retina , Humanos , Persona de Mediana Edad , Retina/metabolismo , Adaptación a la Oscuridad , Enfermedades de la Retina/metabolismo , Mitocondrias/metabolismo , Respiración
2.
Transl Vis Sci Technol ; 11(7): 2, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35802369

RESUMEN

Purpose: In this study, we used broadband near-infrared spectroscopy, a non-invasive optical technique, to investigate in real time the possible role of neuroglobin in retinal hemodynamics and metabolism. Methods: Retinae of 12 C57 mice (seven young and five old) and seven young neuroglobin knockouts (Ngb-KOs) were exposed to light from a low-power halogen source, and the back-reflected light was used to calculate changes in the concentration of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (HHb), and oxidized cytochrome c oxidase (oxCCO). Results: The degree of change in the near-infrared spectroscopy signals associated with HHb, HbO2, and oxCCO was significantly greater in young C57 mice compared to the old C57 mice (P < 0.05) and the Ngb-KO model (P < 0.005). Conclusions: Our results reveal a possible role of Ngb in regulating retinal function, as its absence in the retinae of a knockout mouse model led to suppressed signals that are associated with hemodynamics and oxidative metabolism. Translational Relevance: Near-infrared spectroscopy enabled the non-invasive detection of characteristic signals that differentiate between the retina of a neuroglobin knockout mouse model and that of a wild-type model. Further work is needed to evaluate the source of the signal differences and how these differences relate to the presence or absence of neuroglobin in the ganglion, bipolar, or amacrine cells of the retina.


Asunto(s)
Neuroglobina , Oxihemoglobinas , Retina , Animales , Hemodinámica , Ratones , Neuroglobina/metabolismo , Oxihemoglobinas/metabolismo , Retina/metabolismo
3.
J Biophotonics ; 15(4): e202100283, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35020273

RESUMEN

Blue light (~400-470 nm) is considered potentially detrimental to the retina but is present in natural environmental light. Mitochondrial density is highest in the retina, and they exhibit a prominent optical absorption around 420 nm arising from the Soret band of their porphyrins, including in cytochrome-c-oxidase in their respiratory chain. We examine the impact of continuous 420 nm at environmental energy levels on retinal mitochondrial metabolism and haemodynamics in vivo in real time using broadband near-infrared spectroscopy. One hour environmental exposure to 420 nm induces significant metabolic instability in retinal mitochondria and blood signals, which continues for up to 1 h post blue exposure. Porphyrins are important in mitochondrial adenosine triphosphate (ATP) production and cytochrome-c-oxidase is a key part of the electron transport chain through which this is achieved. Hence, environmental 420 nm likely restricts respiration and ATP production that may impact on retinal function.


Asunto(s)
Mitocondrias , Espectroscopía Infrarroja Corta , Adenosina Trifosfato/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Hemodinámica , Luz , Mitocondrias/metabolismo
4.
Sci Rep ; 11(1): 3274, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558624

RESUMEN

Mitochondrial function declines with age and in some diseases, but we have been unable to analyze this in vivo. Here, we optically examine retinal mitochondrial function as well as choroidal oxygenation and hemodynamics in aging C57 and complement factor H (CFH-/-) mice, proposed models of macular degeneration which suffer early retinal mitochondrial decline. In young C57s mitochondrial populations respire in coupled oscillatory behavior in cycles of ~ 8 min, which is phase linked to choroidal oscillatory hemodynamics. In aging C57s, the oscillations are less regular being ~ 14 min and more dissociated from choroidal hemodynamics. The mitochondrial oscillatory cycles are extended in CFH-/- mice being ~ 16 min and are further dissociated from choroidal hemodynamics. Mitochondrial decline occurs before age-related changes to choroidal vasculature, hence, is the likely origin of oscillatory disruption in hemodynamics. This technology offers a non-invasive technique to detect early retinal disease and its relationship to blood oxygenation in vivo and in real time.


Asunto(s)
Envejecimiento/metabolismo , Degeneración Macular/metabolismo , Mitocondrias/metabolismo , Consumo de Oxígeno , Retina/metabolismo , Envejecimiento/genética , Animales , Modelos Animales de Enfermedad , Degeneración Macular/genética , Ratones , Ratones Noqueados , Mitocondrias/genética
5.
Adv Exp Med Biol ; 1232: C1, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32638345

RESUMEN

This chapter was inadvertently published as an open access chapter. However, the open access for this chapter has now been reverted.

6.
Ann Neurol ; 88(1): 123-136, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32293054

RESUMEN

OBJECTIVE: Treatment of relapses in multiple sclerosis (MS) has not advanced beyond steroid use, which reduces acute loss of function, but has little effect on residual disability. Acute loss of function in an MS model (experimental autoimmune encephalomyelitis [EAE]) is partly due to central nervous system (CNS) hypoxia, and function can promptly improve upon breathing oxygen. Here, we investigate the cause of the hypoxia and whether it is due to a deficit in oxygen supply arising from impaired vascular perfusion. We also explore whether the CNS-selective vasodilating agent, nimodipine, may provide a therapy to restore function, and protect from demyelination in 2 MS models. METHODS: A variety of methods have been used to measure basic cardiovascular physiology, spinal oxygenation, mitochondrial function, and tissue perfusion in EAE. RESULTS: We report that the tissue hypoxia in EAE is associated with a profound hypoperfusion of the inflamed spinal cord. Treatment with nimodipine restores spinal oxygenation and can rapidly improve function. Nimodipine therapy also reduces demyelination in both EAE and a model of the early MS lesion. INTERPRETATION: Loss of function in EAE, and demyelination in EAE, and the model of the early MS lesion, seem to be due, at least in part, to tissue hypoxia due to local spinal hypoperfusion. Therapy to improve blood flow not only protects neurological function but also reduces demyelination. We conclude that nimodipine could be repurposed to offer substantial clinical benefit in MS. ANN NEUROL 2020 ANN NEUROL 2020;88:123-136.


Asunto(s)
Bloqueadores de los Canales de Calcio/uso terapéutico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Nimodipina/uso terapéutico , Médula Espinal/patología , Animales , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Femenino , Imagen por Resonancia Magnética , Masculino , Vaina de Mielina/patología , Ratas , Ratas Sprague-Dawley
7.
Adv Exp Med Biol ; 1232: 245-251, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31893417

RESUMEN

Skeletal muscle metabolic function is known to respond positively to endurance exercise interventions, such as marathon training. Studies investigating skeletal muscle have typically used muscle biopsy samples or magnetic resonance spectroscopy (MRS) to interrogate metabolic function. We aimed to non-invasively detect exercise-training-induced improvements in muscle function using broadband near-infrared spectroscopy (NIRS). We used NIRS to determine concentration changes in oxygenated haemoglobin (HbO2) and the oxidation state of cytochrome-c-oxidase (oxCCO) in gastrocnemius during arterial occlusion in 14 volunteers. We also used a cardio-pulmonary exercise test (CPET) to assess peak total body oxygen uptake (peakVO2; a measure of fitness). Measurements were made at baseline (BL) which was prior to a period of at least 16 weeks of training for the 2017 London Marathon, and then within 3 weeks after completion of the marathon, follow-up (FU). We observed an increase in locally measured muscle oxygen consumption and rate of oxCCO concentration change, but not in cardio-respiratory fitness measured as whole-body peak oxygen consumption (peakVO2).


Asunto(s)
Músculo Esquelético , Consumo de Oxígeno , Carrera , Espectroscopía Infrarroja Corta , Adulto , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Humanos , Masculino , Músculo Esquelético/metabolismo , Oxihemoglobinas/metabolismo
8.
Neurophotonics ; 6(4): 045009, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31737744

RESUMEN

We describe the development of a miniaturized broadband near-infrared spectroscopy system (bNIRS), which measures changes in cerebral tissue oxyhemoglobin ( [ HbO 2 ] ) and deoxyhemoglobin ([HHb]) plus tissue metabolism via changes in the oxidation state of cytochrome-c-oxidase ([oxCCO]). The system is based on a small light source and a customized mini-spectrometer. We assessed the instrument in a preclinical study in 27 newborn piglets undergoing transient cerebral hypoxia-ischemia (HI). We aimed to quantify the recovery of the HI insult and estimate the severity of the injury. The recovery in brain oxygenation ( Δ [ HbDiff ] = Δ [ HbO 2 ] - Δ [ HHb ] ), blood volume ( Δ [ HbT ] = Δ [ HbO 2 ] + Δ [ HHb ] ), and metabolism ( Δ [ oxCCO ] ) for up to 30 min after the end of HI were quantified in percentages using the recovery fraction (RF) algorithm, which quantifies the recovery of a signal with respect to baseline. The receiver operating characteristic analysis was performed on bNIRS-RF measurements compared to proton ( H 1 ) magnetic resonance spectroscopic (MRS)-derived thalamic lactate/N-acetylaspartate (Lac/NAA) measured at 24-h post HI insult; Lac/NAA peak area ratio is an accurate surrogate marker of neurodevelopmental outcome in babies with neonatal HI encephalopathy. The Δ [ oxCCO ] -RF cut-off threshold of 79% within 30 min of HI predicted injury severity based on Lac/NAA with high sensitivity (100%) and specificity (93%). A significant difference in thalamic Lac/NAA was noticed ( p < 0.0001 ) between the two groups based on this cut-off threshold of 79% Δ [ oxCCO ] -RF. The severe injury group ( n = 13 ) had ∼ 30 % smaller recovery in Δ [ HbDiff ] -RF ( p = 0.0001 ) and no significant difference was observed in Δ [ HbT ] -RF between groups. At 48 h post HI, significantly higher P 31 -MRS-measured inorganic phosphate/exchangeable phosphate pool (epp) ( p = 0.01 ) and reduced phosphocreatine/epp ( p = 0.003 ) were observed in the severe injury group indicating persistent cerebral energy depletion. Based on these results, the bNIRS measurement of the oxCCO recovery fraction offers a noninvasive real-time biomarker of brain injury severity within 30 min following HI insult.

9.
Pediatr Res ; 86(6): 699-708, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31357208

RESUMEN

BACKGROUND: Neuroprotection from therapeutic hypothermia (HT) is incomplete, therefore additional strategies are necessary to improve long-term outcomes. We assessed the neuroprotective efficacy of magnesium sulfate (MgSO4) bolus and infusion over 48 h plus HT in a piglet model of term neonatal encephalopathy (NE). METHODS: Fifteen newborn piglets were randomized following hypoxia-ischemia (HI) to: (i) MgSO4 180 mg/kg bolus and 8 mg/kg/h infusion with HT (Mg+HT) or (ii) HT and saline 0.5 ml/h (HT). Treatments were initiated 1 h post-HI; HT administered for 12 h (33.5 °C). HI was performed by transient carotid occlusion and inhalation of 6% O2 for 20-25 min. Primary outcomes included aEEG, magnetic resonance spectroscopy (MRS) at 24, and 48 h, and immunohistochemistry. RESULTS: MgSO4 bolus and infusion was well tolerated (no hypotension) and doubled serum magnesium (0.72 vs 1.52 mmol/L) with modest (16%) rise in CSF. In Mg+HT compared to HT, there was overall reduced cell death (p = 0.01) and increased oligodendrocytes (p = 0.002). No improvement was seen on aEEG recovery (p = 0.084) or MRS (Lac/NAA; PCr/Pi; NTP/epp) (p > 0.05) at 48 h. CONCLUSION: Doubling serum magnesium with HT was safe; however, the small incremental benefit of Mg+HT compared to HT is unlikely to translate into substantive long-term improvement. Such an incremental effect might justify further study of MgSO4 in combination with multiple therapies.


Asunto(s)
Animales Recién Nacidos , Hipotermia Inducida , Hipoxia-Isquemia Encefálica/terapia , Sulfato de Magnesio/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Animales , Análisis de los Gases de la Sangre , Terapia Combinada , Electroencefalografía , Hipoxia-Isquemia Encefálica/fisiopatología , Magnesio/sangre , Magnesio/líquido cefalorraquídeo , Masculino , Porcinos
10.
Sci Rep ; 7(1): 1330, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28465584

RESUMEN

While near-infrared spectroscopy (NIRS) haemodynamic measures have proven to be vastly useful in investigating human brain development, the haemodynamic response function (HRF) in infants is not yet fully understood. NIRS measurements of the oxidation state of mitochondrial enzyme cytochrome-c-oxidase (oxCCO) have the potential to yield key information about cellular oxygen utilisation and therefore energy metabolism. We used a broadband NIRS system to measure changes in oxCCO, in addition to haemodynamic changes, during functional activation in a group of 33 typically developing infants aged between 4 and 6 months. The responses were recorded over the right temporal lobe while the infants were presented with engaging videos containing social content. A significant increase in oxCCO was found in response to the social stimuli, with maximum increase of 0.238 ± 0.13 µM. These results are the first reported significant change in oxCCO in response to stimulus-evoked activation in human infants and open new vistas for investigating human infant brain function and its energy metabolism.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Consumo de Oxígeno , Espectroscopía Infrarroja Corta/métodos , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/metabolismo , Estimulación Acústica , Percepción Auditiva , Biomarcadores/metabolismo , Mapeo Encefálico/métodos , Metabolismo Energético , Femenino , Humanos , Lactante , Masculino , Acoplamiento Neurovascular , Estimulación Luminosa , Lóbulo Temporal/fisiología , Percepción Visual
11.
Dev Neurosci ; 39(1-4): 156-170, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28391258

RESUMEN

The selective α2-adrenoreceptor agonist dexmedetomidine has shown neuroprotective, analgesic, anti-inflammatory, and sympatholytic properties that may be beneficial in neonatal encephalopathy (NE). As therapeutic hypothermia is only partially effective, adjunct therapies are needed to optimize outcomes. The aim was to assess whether hypothermia + dexmedetomidine treatment augments neuroprotection compared to routine treatment (hypothermia + fentanyl sedation) in a piglet model of NE using magnetic resonance spectroscopy (MRS) biomarkers, which predict outcomes in babies with NE, and immunohistochemistry. After hypoxia-ischaemia (HI), 20 large White male piglets were randomized to: (i) hypothermia + fentanyl with cooling to 33.5°C from 2 to 26 h, or (ii) hypothermia + dexmedetomidine (a loading dose of 2 µg/kg at 10 min followed by 0.028 µg/kg/h for 48 h). Whole-brain phosphorus-31 and regional proton MRS biomarkers were assessed at baseline, 24, and 48 h after HI. At 48 h, cell death was evaluated over 7 brain regions by means of transferase-mediated d-UTP nick end labeling (TUNEL). Dexmedetomidine plasma levels were mainly within the target sedative range of 1 µg/L. In the hypothermia + dexmedetomidine group, there were 6 cardiac arrests (3 fatal) versus 2 (non-fatal) in the hypothermia + fentanyl group. The hypothermia + dexmedetomidine group required more saline (p = 0.005) to maintain blood pressure. Thalamic and white-matter lactate/N-acetylaspartate did not differ between groups (p = 0.66 and p = 0.21, respectively); the whole-brain nucleotide triphosphate/exchangeable phosphate pool was similar (p = 0.73) over 48 h. Cell death (TUNEL-positive cells/mm2) was higher in the hypothermia + dexmedetomidine group than in the hypothermia + fentanyl group (mean 5.1 vs. 2.3, difference 2.8 [95% CI 0.6-4.9], p = 0.036). Hypothermia + dexmedetomidine treatment was associated with adverse cardiovascular events, even within the recommended clinical sedative plasma level; these may have been exacerbated by an interaction with either isoflurane or low body temperature. Hypothermia + dexmedetomidine treatment was neurotoxic following HI in our piglet NE model, suggesting that caution is vital if dexmedetomidine is combined with cooling following NE.


Asunto(s)
Asfixia Neonatal , Sistema Cardiovascular/efectos de los fármacos , Dexmedetomidina/toxicidad , Hipotermia Inducida/métodos , Hipoxia-Isquemia Encefálica , Fármacos Neuroprotectores/toxicidad , Animales , Animales Recién Nacidos , Terapia Combinada/métodos , Masculino , Distribución Aleatoria , Porcinos
12.
Exp Eye Res ; 152: 88-93, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27664904

RESUMEN

Mitochondria play a key role in ageing and disease. Their membrane potentials and ATP production decline with age and this is associated with progressive inflammation, cell loss and death. Here we use broadband Near-Infrared Spectroscopy (NIRS) to non-invasively measure in-vivo changes in aged retinal mitochondrial respiration following exposure to 670 nm, which improves mitochondrial performance and reduces inflammation. Low power NIR light was shone into the eye via a fibre optic and the reflection monitored to measure signature changes in the oxidation of cytochrome c oxidase (COX) in complex IV of the electron transport chain. Changes in retinal haemodynamics and oxygenation were also recorded simultaneously with COX by measuring changes in oxygenated and deoxygenated haemoglobin (Δ[HbO2] and Δ[HHb]). Retinae of aged rats exposed to 670 nm for 5 mins showed consistent progressive increases in oxidation of COX 5 mins post exposure. This remained significantly greater than baseline for up to 2 h. This was not seen when retinae were exposed to 420 nm light of the same power or when no light was applied. 670 nm exposure significantly increased total haemoglobin concentration (Δ[HbT] = Δ[HbO2] +Δ[HHb]) but not haemoglobin difference (Δ[HbDiff] = Δ[HbO2] -Δ[HHb]). There were no changes in blood metrics in association with 420 nm light or when no light exposure was given. Hence, brief 670 nm exposure that is associated with reduced inflammation has a significant positive impact on the redox state of COX in aged retinae. The relative redox state of retinal COX may provide a valuable biomarker in ageing and macular degeneration where declining mitochondrial function is implicated.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Degeneración Macular/metabolismo , Mitocondrias/metabolismo , Monitoreo Fisiológico/métodos , Oxidación-Reducción , Retina/metabolismo , Espectroscopía Infrarroja Corta/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Luz , Degeneración Macular/diagnóstico , Mitocondrias/efectos de la radiación , Consumo de Oxígeno/fisiología , Ratas , Retina/diagnóstico por imagen , Retina/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...