Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 11(4): e1004817, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25875808

RESUMEN

Many positive-strand RNA viruses encode genes that can function in trans, whereas other genes are required in cis for genome replication. The mechanisms underlying trans- and cis-preferences are not fully understood. Here, we evaluate this concept for hepatitis C virus (HCV), an important cause of chronic liver disease and member of the Flaviviridae family. HCV encodes five nonstructural (NS) genes that are required for RNA replication. To date, only two of these genes, NS4B and NS5A, have been trans-complemented, leading to suggestions that other replicase genes work only in cis. We describe a new quantitative system to measure the cis- and trans-requirements for HCV NS gene function in RNA replication and identify several lethal mutations in the NS3, NS4A, NS4B, NS5A, and NS5B genes that can be complemented in trans, alone or in combination, by expressing the NS3-5B polyprotein from a synthetic mRNA. Although NS5B RNA binding and polymerase activities can be supplied in trans, NS5B protein expression was required in cis, indicating that NS5B has a cis-acting role in replicase assembly distinct from its known enzymatic activity. Furthermore, the RNA binding and NTPase activities of the NS3 helicase domain were required in cis, suggesting that these activities play an essential role in RNA template selection. A comprehensive complementation group analysis revealed functional linkages between NS3-4A and NS4B and between NS5B and the upstream NS3-5A genes. Finally, NS5B polymerase activity segregated with a daclatasvir-sensitive NS5A activity, which could explain the synergy of this antiviral compound with nucleoside analogs in patients. Together, these studies define several new aspects of HCV replicase structure-function, help to explain the potency of HCV-specific combination therapies, and provide an experimental framework for the study of cis- and trans-acting activities in positive-strand RNA virus replication more generally.


Asunto(s)
Hepacivirus/genética , ARN Viral/genética , Transcripción Genética/genética , Proteínas no Estructurales Virales/genética , Replicación Viral/genética , Línea Celular Tumoral , Humanos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , ARN Polimerasa Dependiente del ARN/genética , Transfección
2.
PLoS Pathog ; 11(2): e1004699, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25693203

RESUMEN

Trafficking of human papillomaviruses to the Golgi apparatus during virus entry requires retromer, an endosomal coat protein complex that mediates the vesicular transport of cellular transmembrane proteins from the endosome to the Golgi apparatus or the plasma membrane. Here we show that the HPV16 L2 minor capsid protein is a retromer cargo, even though L2 is not a transmembrane protein. We show that direct binding of retromer to a conserved sequence in the carboxy-terminus of L2 is required for exit of L2 from the early endosome and delivery to the trans-Golgi network during virus entry. This binding site is different from known retromer binding motifs and can be replaced by a sorting signal from a cellular retromer cargo. Thus, HPV16 is an unconventional particulate retromer cargo, and retromer binding initiates retrograde transport of viral components from the endosome to the trans-Golgi network during virus entry. We propose that the carboxy-terminal segment of L2 protein protrudes through the endosomal membrane and is accessed by retromer in the cytoplasm.


Asunto(s)
Proteínas de la Cápside/metabolismo , Núcleo Celular/virología , Papillomavirus Humano 16/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Liberación del Virus/fisiología , Antígenos Virales/metabolismo , Sitios de Unión , Cápside/metabolismo , Proteínas de la Cápside/genética , Línea Celular , Endosomas/virología , Aparato de Golgi/metabolismo , Aparato de Golgi/virología , Células HEK293 , Células HeLa , Humanos , Proteínas Oncogénicas Virales/genética , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Internalización del Virus
3.
mBio ; 5(5): e01777-14, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25227470

RESUMEN

UNLABELLED: The route taken by papillomaviruses from the cell surface to the nucleus during infection is incompletely understood. Here, we developed a novel human papillomavirus 16 (HPV16) pseudovirus in which the carboxy terminus of the minor capsid protein L2 is exposed on the exterior of the intact capsid prior to cell binding. With this pseudovirus, we used the proximity ligation assay immune detection technique to demonstrate that during entry HPV16 L2 traffics into and out of the early endosome prior to Golgi localization, and we demonstrated that L2 enters the endoplasmic reticulum during entry. The cellular membrane-associated protease, γ-secretase, is required for infection by HPV16 pseudovirus and authentic HPV16. We also showed that inhibition of γ-secretase does not interfere substantively with virus internalization, initiation of capsid disassembly, entry into the early endosome, or exit from this compartment, but γ-secretase is required for localization of L2 and viral DNA to the Golgi apparatus and the endoplasmic reticulum. These results show that incoming HPV16 traffics sequentially from the cell surface to the endosome and then to the Golgi apparatus and the endoplasmic reticulum prior to nuclear entry. IMPORTANCE: The human papillomaviruses are small nonenveloped DNA viruses responsible for approximately 5% of all human cancer deaths, but little is known about the process by which these viruses transit from the cell surface to the nucleus. Here we show that incoming HPV16, the most common high-risk HPV, traffics though a series of vesicular compartments during infectious entry, including the endosome, Golgi apparatus, and endoplasmic reticulum. Furthermore, we show that γ-secretase, a cellular membrane-associated protease, is required for entry of the L2 minor capsid protein and viral DNA into the Golgi apparatus and endoplasmic reticulum. These studies reveal a new pathway of cell entry by DNA viruses and suggest that components of this pathway are candidate antiviral targets.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Retículo Endoplásmico/virología , Genoma Viral , Aparato de Golgi/virología , Papillomavirus Humano 16/fisiología , Secretasas de la Proteína Precursora del Amiloide/genética , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , ADN Viral/genética , Endosomas/virología , Células HeLa , Papillomavirus Humano 16/genética , Humanos , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Internalización del Virus
4.
Bioorg Med Chem ; 22(17): 4836-47, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25087050

RESUMEN

Human polyoma- and papillomaviruses are non-enveloped DNA viruses that cause severe pathologies and mortalities. Under circumstances of immunosuppression, JC polyomavirus causes a fatal demyelinating disease called progressive multifocal leukoencephalopathy (PML) and the BK polyomavirus is the etiological agent of polyomavirus-induced nephropathy and hemorrhagic cystitis. Human papillomavirus type 16, another non-enveloped DNA virus, is associated with the development of cancers in tissues like the uterine cervix and oropharynx. Currently, there are no approved drugs or vaccines to treat or prevent polyomavirus infections. We recently discovered that the small molecule Retro-2(cycl), an inhibitor of host retrograde trafficking, blocked infection by several human and monkey polyomaviruses. Here, we report diversity-oriented syntheses of Retro-2(cycl) and evaluation of the resulting analogs using an assay of human cell infections by JC polyomavirus. We defined structure-activity relationships and also discovered analogs with significantly improved potency as suppressors of human polyoma- and papillomavirus infection in vitro. Our findings represent an advance in the development of drug candidates that can broadly protect humans from non-enveloped DNA viruses and toxins that exploit retrograde trafficking as a means for cell entry.


Asunto(s)
Transporte Axonal/efectos de los fármacos , Virus JC/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/virología , Papillomaviridae/efectos de los fármacos , Quinazolinas/farmacología , Internalización del Virus/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Virus JC/fisiología , Estructura Molecular , Papillomaviridae/fisiología , Quinazolinas/síntesis química , Quinazolinas/química , Relación Estructura-Actividad
5.
J Bacteriol ; 196(19): 3377-85, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25002546

RESUMEN

Peptide-nucleotide antibiotic microcin C (McC) is produced by some Escherichia coli strains. Inside a sensitive cell, McC is processed, releasing a nonhydrolyzable analog of aspartyl-adenylate, which inhibits aspartyl-tRNA synthetase. The product of mccE, a gene from the plasmid-borne McC biosynthetic cluster, acetylates processed McC, converting it into a nontoxic compound. MccE is homologous to chromosomally encoded acetyltransferases RimI, RimJ, and RimL, which acetylate, correspondingly, the N termini of ribosomal proteins S18, S5, and L12. Here, we show that E. coli RimL, but not other Rim acetyltransferases, provides a basal level of resistance to McC and various toxic nonhydrolyzable aminoacyl adenylates. RimL acts by acetylating processed McC, which along with ribosomal protein L12 should be considered a natural RimL substrate. When overproduced, RimL also makes cells resistant to albomycin, an antibiotic that upon intracellular processing gives rise to a seryl-thioribosyl pyrimidine that targets seryl-tRNA synthetase. We further show that E. coli YhhY, a protein related to Rim acetyltransferases but without a known function, is also able to detoxify several nonhydrolyzable aminoacyl adenylates but not processed McC. We propose that RimL and YhhY protect bacteria from various toxic aminoacyl nucleotides, either exogenous or those generated inside the cell during normal metabolism.


Asunto(s)
Acetiltransferasas/metabolismo , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/toxicidad , Ácido Aspártico/análogos & derivados , Bacteriocinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Iniciación de la Cadena Peptídica Traduccional , Acetiltransferasas/genética , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Ácido Aspártico/toxicidad , Bacteriocinas/química , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos
6.
J Bacteriol ; 193(14): 3618-23, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21602342

RESUMEN

Microcin C (McC), a natural antibacterial compound consisting of a heptapeptide attached to a modified adenosine, is actively taken up by the YejABEF transporter, after which it is processed by cellular aminopeptidases, releasing the nonhydrolyzable aminoacyl adenylate, an inhibitor of aspartyl-tRNA synthetase. McC analogues with variable length of the peptide moiety were synthesized and evaluated in order to characterize the substrate preferences of the YejABEF transporter. It was shown that a minimal peptide chain length of 6 amino acids and the presence of an N-terminal formyl-methionyl-arginyl sequence are required for transport.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Antibacterianos/metabolismo , Bacteriocinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Péptidos/química , Transportadoras de Casetes de Unión a ATP/genética , Antibacterianos/química , Bacteriocinas/química , Transporte Biológico , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Estructura Molecular , Péptidos/genética , Péptidos/metabolismo
7.
J Biol Chem ; 285(49): 37944-52, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-20876530

RESUMEN

The heptapeptide-nucleotide microcin C (McC) is a potent inhibitor of enteric bacteria growth. Inside a sensitive cell, McC is processed by aminopeptidases, which release a nonhydrolyzable aspartyl-adenylate, a strong inhibitor of aspartyl-tRNA synthetase. The mccABCDE operon is sufficient for McC production and resistance of the producing cell to McC. An additional gene, mccF, which is adjacent to but not part of the mccABCDE operon, also provides resistance to exogenous McC. MccF is similar to Escherichia coli LdcA, an L,D-carboxypeptidase whose substrate is monomeric murotetrapeptide L-Ala-D-Glu-meso-A(2)pm-D-Ala or its UDP-activated murein precursor. The mechanism by which MccF provides McC resistance remained unknown. Here, we show that MccF detoxifies both intact and processed McC by cleaving an amide bond between the C-terminal aspartate and the nucleotide moiety. MccF also cleaves the same bond in nonhydrolyzable aminoacyl sulfamoyl adenosines containing aspartyl, glutamyl, and, to a lesser extent, seryl aminoacyl moieties but is ineffective against other aminoacyl adenylates.


Asunto(s)
Bacteriocinas/farmacología , Farmacorresistencia Bacteriana/fisiología , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Péptido Hidrolasas/metabolismo , Aspartato-ARNt Ligasa/antagonistas & inhibidores , Bacteriocinas/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Inhibidores Enzimáticos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Operón/fisiología , Péptido Hidrolasas/genética , Peptidoglicano/genética , Peptidoglicano/metabolismo
8.
J Biol Chem ; 285(17): 12662-9, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20159968

RESUMEN

The heptapeptide-nucleotide microcin C (McC) is a potent inhibitor of enteric bacteria growth. McC is excreted from producing cells by the MccC transporter. The residual McC that remains in the producing cell can be processed by cellular aminopeptidases with the release of a non-hydrolyzable aspartyl-adenylate, a strong inhibitor of aspartyl-tRNA synthetase. Accumulation of processed McC inside producing cells should therefore lead to translation inhibition and cessation of growth. Here, we show that a product of another gene of the McC biosynthetic cluster, mccE, acetylates processed McC and converts it into a non-toxic compound. MccE also makes Escherichia coli resistant to albomycin, a Trojan horse inhibitor unrelated to McC that, upon processing, gives rise to a serine coupled to a thioxylofuranosyl pyrimidine, an inhibitor of seryl-tRNA synthetase. We speculate that MccE and related cellular acetyltransferases of the Rim family may detoxify various aminoacyl-nucleotides, either exogenous or those generated inside the cell.


Asunto(s)
Acetiltransferasas/metabolismo , Bacteriocinas/farmacología , Farmacorresistencia Bacteriana/fisiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Familia de Multigenes/fisiología , Biosíntesis de Proteínas/efectos de los fármacos , Acetiltransferasas/genética , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Antibacterianos/farmacología , Aspartato-ARNt Ligasa/antagonistas & inhibidores , Ácido Aspártico/análogos & derivados , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Bacteriocinas/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/farmacología , Ferricromo/análogos & derivados , Ferricromo/farmacología , Biosíntesis de Proteínas/fisiología
9.
J Bacteriol ; 191(20): 6273-80, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19684138

RESUMEN

Microcin C (McC) is a potent antibacterial agent produced by some strains of Escherichia coli. McC consists of a ribosomally synthesized heptapeptide with a modified AMP attached through a phosphoramidate linkage to the alpha-carboxyl group of the terminal aspartate. McC is a Trojan horse inhibitor: it is actively taken inside sensitive cells and processed there, and the product of processing, a nonhydrolyzable aspartyl-adenylate, inhibits translation by preventing aminoacylation of tRNA(Asp) by aspartyl-tRNA synthetase (AspRS). Changing the last residue of the McC peptide should result in antibacterial compounds with targets other than AspRS. However, mutations that introduce amino acid substitutions in the last position of the McC peptide abolish McC production. Here, we report total chemical synthesis of three McC-like compounds containing a terminal aspartate, glutamate, or leucine attached to adenosine through a nonhydrolyzable sulfamoyl bond. We show that all three compounds function in a manner similar to that of McC, but the first compound inhibits bacterial growth by targeting AspRS while the latter two inhibit, respectively, GluRS and LeuRS. Our approach opens a way for creation of new antibacterial Trojan horse agents that target any 1 of the 20 tRNA synthetases in the cell.


Asunto(s)
Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Antibacterianos/química , Antibacterianos/farmacología , Bacteriocinas/química , Bacteriocinas/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli K12/efectos de los fármacos , Escherichia coli K12/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Estructura Molecular
10.
J Bacteriol ; 191(7): 2380-7, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19168611

RESUMEN

Microcin C (McC), an inhibitor of the growth of enteric bacteria, consists of a heptapeptide with a modified AMP residue attached to the backbone of the C-terminal aspartate through an N-acyl phosphamidate bond. Here we identify maturation intermediates produced by cells lacking individual mcc McC biosynthesis genes. We show that the products of the mccD and mccE genes are required for attachment of a 3-aminopropyl group to the phosphate of McC and that this group increases the potency of inhibition of the McC target, aspartyl-tRNA synthetase.


Asunto(s)
Bacteriocinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Inhibidores de la Síntesis de la Proteína/metabolismo , Aspartato-ARNt Ligasa/antagonistas & inhibidores , Aspartato-ARNt Ligasa/metabolismo , Bacteriocinas/química , Bacteriocinas/genética , Bacteriocinas/aislamiento & purificación , Vías Biosintéticas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Modelos Moleculares , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/aislamiento & purificación
11.
J Bacteriol ; 190(7): 2607-10, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18223070

RESUMEN

The heptapeptide-nucleotide microcin C (McC) targets aspartyl-tRNA synthetase. Upon its entry into a susceptible cell, McC is processed to release a nonhydrolyzable aspartyl-adenylate that inhibits aspartyl-tRNA synthetase, leading to the cessation of translation and cell growth. Here, we surveyed Escherichia coli cells with singly, doubly, and triply disrupted broad-specificity peptidase genes to show that any of three nonspecific oligopeptidases (PepA, PepB, or PepN) can effectively process McC. We also show that the rate-limiting step of McC processing in vitro is deformylation of the first methionine residue of McC.


Asunto(s)
Bacteriocinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Péptido Hidrolasas/metabolismo , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Aspartato-ARNt Ligasa/antagonistas & inhibidores , Aspartato-ARNt Ligasa/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriocinas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Espectrometría de Masas , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Estructura Molecular , Mutación , Péptido Hidrolasas/genética , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
12.
J Bacteriol ; 189(22): 8361-5, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17873039

RESUMEN

Microcin C (McC), a peptide-nucleotide antibiotic, targets aspartyl-tRNA synthetase. By analyzing a random transposon library, we identified Escherichia coli mutants resistant to McC. Transposon insertions were localized to a single locus, yejABEF, which encodes components of a putative inner membrane ABC transporter. Analysis of site-specific mutants established that all four components of the transporter are required for McC sensitivity. Since aspartyl-tRNA synthetase in yej mutant extracts was fully sensitive to McC, we conclude that yej mutations interfere with McC uptake and that YejABEF is the only inner membrane transporter responsible for McC uptake in E. coli. Other substrates of YejABEF remain to be identified.


Asunto(s)
Bacteriocinas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacteriocinas/farmacología , Regulación Bacteriana de la Expresión Génica , Mutagénesis Sitio-Dirigida , Mutación , Filogenia , Biosíntesis de Proteínas/efectos de los fármacos
13.
Mol Microbiol ; 65(6): 1380-94, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17711420

RESUMEN

Microcins are a class of ribosomally synthesized antibacterial peptides produced by Enterobacteriaceae and active against closely related bacterial species. While some microcins are active as unmodified peptides, others are heavily modified by dedicated maturation enzymes. Low-molecular-weight microcins from the post-translationally modified group target essential molecular machines inside the cells. In this review, available structural and functional data about three such microcins--microcin J25, microcin B17 and microcin C7-C51--are discussed. While all three low-molecular-weight post-translationally modified microcins are produced by Escherichia coli, inferences based on sequence and structural similarities with peptides encoded or produced by phylogenetically diverse bacteria are made whenever possible to put these compounds into a larger perspective.


Asunto(s)
Bacteriocinas/química , Bacteriocinas/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Bacterias/genética , Genes Bacterianos , Datos de Secuencia Molecular , Peso Molecular , Filogenia
14.
J Bacteriol ; 189(11): 4087-93, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17384193

RESUMEN

Bacterial translation initiation factor IF1 is an S1 domain protein that belongs to the oligomer binding (OB) fold proteins. Cold shock domain (CSD)-containing proteins such as CspA (the major cold shock protein of Escherichia coli) and its homologues also belong to the OB fold protein family. The striking structural similarity between IF1 and CspA homologues suggests a functional overlap between these proteins. Certain members of the CspA family of cold shock proteins act as nucleic acid chaperones: they melt secondary structures in nucleic acids and act as transcription antiterminators. This activity may help the cell to acclimatize to low temperatures, since cold-induced stabilization of secondary structures in nascent RNA can impede transcription elongation. Here we show that the E. coli translation initiation factor, IF1, also has RNA chaperone activity and acts as a transcription antiterminator in vivo and in vitro. We further show that the RNA chaperone activity of IF1, although critical for transcription antitermination, is not essential for its role in supporting cell growth, which presumably functions in translation. The results thus indicate that IF1 may participate in transcription regulation and that cross talk and/or functional overlap may exist between the Csp family proteins, known to be involved in transcription regulation at cold shock, and S1 domain proteins, known to function in translation.


Asunto(s)
Transcripción Genética/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Histidina/genética , Histidina/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiología , Mutagénesis Sitio-Dirigida , Mutación , Factor 1 Procariótico de Iniciación/genética , Factor 1 Procariótico de Iniciación/metabolismo , Factor 1 Procariótico de Iniciación/fisiología , Unión Proteica
15.
J Bacteriol ; 189(5): 2114-8, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17158672

RESUMEN

Microcin C (McC), a peptide-nucleotide Trojan horse antibiotic, targets aspartyl-tRNA synthetase. We present the results of a systematic mutational study of the 7-amino-acid ribosomally synthesized peptide moiety of McC. Our results define amino acid positions important for McC maturation and cell uptake and processing and open the way for creation of more potent McC-based inhibitors.


Asunto(s)
Antibacterianos/farmacología , Aspartato-ARNt Ligasa/antagonistas & inhibidores , Bacteriocinas/farmacología , Inhibidores Enzimáticos/farmacología , Escherichia coli/efectos de los fármacos , Relación Estructura-Actividad
16.
J Biol Chem ; 281(26): 18033-42, 2006 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16574659

RESUMEN

Microcin C is a ribosome-synthesized heptapeptide that contains a modified adenosine monophosphate covalently attached to the C-terminal aspartate. Microcin C is a potent inhibitor of bacterial cell growth. Based on the in vivo kinetics of inhibition of macromolecular synthesis, Microcin C targets translation, through a mechanism that remained undefined. Here, we show that Microcin C is a subject of specific degradation inside the sensitive cell. The product of degradation, a modified aspartyl-adenylate containing an N-acylphosphoramidate linkage, strongly inhibits translation by blocking the function of aspartyl-tRNA synthetase.


Asunto(s)
Antibacterianos/farmacocinética , Aspartato-ARNt Ligasa/antagonistas & inhibidores , Bacteriocinas/farmacocinética , Escherichia coli/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Aminoacilación , Antibacterianos/química , Aspartato-ARNt Ligasa/metabolismo , Bacteriocinas/química , Escherichia coli/genética , Hidrólisis , Técnicas In Vitro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...