Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Inverse Ill Posed Probl ; 28(6): 923-932, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34690436

RESUMEN

We present the comparative study of the analytical forward model and the statistical simulation of the Compton single scatter in the Positron Emission Tomography. The formula of the forward model has been obtained using the Single Scatter Simulation approximation under simplified assumptions and therefore we calculate scatter projections using independent Monte Carlo simulation mimicking the scatter physics. The numerical comparative study has been performed using a digital cylindrical phantom filled in with water and containing spherical sources of emission activity located at the central and several displaced positions. Good fits of the formula-based and statistically generated profiles of scatter projections are observed in the presented numerical results.

2.
J Appl Crystallogr ; 50(Pt 4): 1075-1083, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28808433

RESUMEN

A novel algorithm for indexing multiple crystals in snapshot X-ray diffraction images, especially suited for serial crystallography data, is presented. The algorithm, FELIX, utilizes a generalized parametrization of the Rodrigues-Frank space, in which all crystal systems can be represented without singularities. The new algorithm is shown to be capable of indexing more than ten crystals per image in simulations of cubic, tetragonal and monoclinic crystal diffraction patterns. It is also used to index an experimental serial crystallography dataset from lysozyme microcrystals. The increased number of indexed crystals is shown to result in a better signal-to-noise ratio, and fewer images are needed to achieve the same data quality as when indexing one crystal per image. The relative orientations between the multiple crystals indexed in an image show a slight tendency of the lysozme microcrystals to adhere on ([Formula: see text]10) facets.

3.
Ultramicroscopy ; 110(9): 1128-42, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20462697

RESUMEN

Recognizing that the microscope depth of field is a significant resolution-limiting factor in 3D cryoelectron microscopy, Jensen and Kornberg proposed a concept they called defocus-gradient corrected backprojection (DGCBP) and illustrated by computer simulations that DGCBP can effectively eliminate the depth of field limitation. They did not provide a mathematical justification for their concept. Our paper provides this, by showing (in the idealized case of noiseless data being available for all projection directions) that the reconstructions obtained based on DGCBP from data produced with distance-dependent blurring are essentially the same as what is obtained by a classical method of reconstruction of a 3D object from its line integrals. The approach is general enough to be applicable for correcting for any distance-dependent blurring during projection data collection. We present a new implementation of the DGCBP concept, one that closely follows the mathematics of its justifications, and illustrate it using mathematically described phantoms and their reconstructions from finitely many distance-dependently blurred projections.

4.
IEEE Trans Med Imaging ; 25(7): 845-54, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16827486

RESUMEN

Fourier-based approaches for three-dimensional (3-D) reconstruction are based on the relationship between the 3-D Fourier transform (FT) of the volume and the two-dimensional (2-D) FT of a parallel-ray projection of the volume. The critical step in the Fourier-based methods is the estimation of the samples of the 3-D transform of the image from the samples of the 2-D transforms of the projections on the planes through the origin of Fourier space, and vice versa for forward-projection (reprojection). The Fourier-based approaches have the potential for very fast reconstruction, but their straightforward implementation might lead to unsatisfactory results if careful attention is not paid to interpolation and weighting functions. In our previous work, we have investigated optimal interpolation parameters for the Fourier-based forward and back-projectors for iterative image reconstruction. The optimized interpolation kernels were shown to provide excellent quality comparable to the ideal sinc interpolator. This work presents an optimization of interpolation parameters of the 3-D direct Fourier method with Fourier reprojection (3D-FRP) for fully 3-D positron emission tomography (PET) data with incomplete oblique projections. The reprojection step is needed for the estimation (from an initial image) of the missing portions of the oblique data. In the 3D-FRP implementation, we use the gridding interpolation strategy, combined with proper weighting approaches in the transform and image domains. We have found that while the 3-D reprojection step requires similar optimal interpolation parameters as found in our previous studies on Fourier-based iterative approaches, the optimal interpolation parameters for the main 3D-FRP reconstruction stage are quite different. Our experimental results confirm that for the optimal interpolation parameters a very good image accuracy can be achieved even without any extra spectral oversampling, which is a common practice to decrease errors caused by interpolation in Fourier reconstruction.


Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Tomografía de Emisión de Positrones/métodos , Análisis de Fourier , Análisis Numérico Asistido por Computador , Fantasmas de Imagen , Tomografía de Emisión de Positrones/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
IEEE Trans Med Imaging ; 23(4): 401-12, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15084066

RESUMEN

Iterative image reconstruction algorithms play an increasingly important role in modern tomographic systems, especially in emission tomography. With the fast increase of the sizes of the tomographic data, reduction of the computation demands of the reconstruction algorithms is of great importance. Fourier-based forward and back-projection methods have the potential to considerably reduce the computation time in iterative reconstruction. Additional substantial speed-up of those approaches can be obtained utilizing powerful and cheap off-the-shelf fast Fourier transform (FFT) processing hardware. The Fourier reconstruction approaches are based on the relationship between the Fourier transform of the image and Fourier transformation of the parallel-ray projections. The critical two steps are the estimations of the samples of the projection transform, on the central section through the origin of Fourier space, from the samples of the transform of the image, and vice versa for back-projection. Interpolation errors are a limitation of Fourier-based reconstruction methods. We have applied min-max optimized Kaiser-Bessel interpolation within the nonuniform FFT (NUFFT) framework and devised ways of incorporation of resolution models into the Fourier-based iterative approaches. Numerical and computer simulation results show that the min-max NUFFT approach provides substantially lower approximation errors in tomographic forward and back-projection than conventional interpolation methods. Our studies have further confirmed that Fourier-based projectors using the NUFFT approach provide accurate approximations to their space-based counterparts but with about ten times faster computation, and that they are viable candidates for fast iterative image reconstruction.


Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Señales Asistido por Computador , Tomografía Computarizada de Emisión/métodos , Simulación por Computador , Retroalimentación , Análisis de Fourier , Humanos , Aumento de la Imagen/instrumentación , Interpretación de Imagen Asistida por Computador/instrumentación , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Tórax/diagnóstico por imagen , Tomografía/instrumentación , Tomografía/métodos , Tomografía Computarizada de Emisión/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...