Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 14(1): 57-63, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30478274

RESUMEN

Despite tremendous progress in efficiency and stability, perovskite solar cells are still facing the challenge of upscaling. Here we present unique advantages of reactive polyiodide melts for solvent- and adduct-free reactionary fabrication of perovskite films exhibiting excellent quality over large areas. Our method employs a nanoscale layer of metallic Pb coated with stoichiometric amounts of CH3NH3I (MAI) or mixed CsI/MAI/NH2CHNH2I (FAI), subsequently exposed to iodine vapour. The instantly formed MAI3(L) or Cs(MA,FA)I3(L) polyiodide liquid converts the Pb layer into a pure perovskite film without byproducts or unreacted components at nearly room temperature. We demonstrate highly uniform and relatively large area MAPbI3 perovskite films, such as 100 cm2 on glass/fluorine-doped tin oxide (FTO) and 600 cm2 on flexible polyethylene terephthalate (PET)/indium tin oxide (ITO) substrates. As a proof-of-concept, we demonstrate solar cells with reverse scan power conversion efficiencies of 16.12% (planar MAPbI3), 17.18% (mesoscopic MAPbI3) and 16.89% (planar Cs0.05MA0.2FA0.75PbI3) in the standard FTO/c(m)-TiO2/perovskite/spiro-OMeTAD/Au architecture.

2.
ACS Appl Mater Interfaces ; 9(42): 36708-36714, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28981252

RESUMEN

Perovskite solar cells (PSCs) without a mesoporous TiO2 layer, that is, planar-type PSCs exhibit poorer cell performance as compared to PSCs with a porous TiO2 layer, owing to inefficient electron transfer from the perovskite layer to the compact TiO2 layer in the former case. The matching of the conduction band levels of perovskite and the compact TiO2 layer is thus essential for enhancing PSC performance. In this study, we demonstrate the shifting of the conduction band edge (CBE) of the compact TiO2 layer through a TiCl4 treatment, with the aim of improving PSC performance. The CBE of the compact TiO2 layer was shifted to a higher level through the TiCl4 treatment and then shifted in the opposite direction, that is, to a lower level, through a subsequent heat treatment. These shifts in the CBE were reflected in the PSC performance. The TiCl4-treated PSC showed an increase in the open-circuit voltage of more than 150 mV, as well as a decrease of 100 mV after being heated at 450 °C. On the other hand, the short-circuit current decreased after the treatment but increased after heating at temperatures higher than 300 °C. The treated PSC subjected to subsequent heating at 300 °C exhibited the best performance, with the power conversion efficiency of the PSC being 17% under optimized conditions.

3.
ChemSusChem ; 10(19): 3754-3759, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-28660660

RESUMEN

Hybrid CPbX3 (C: Cs, CH3 NH3 ; X: Br, I) perovskites possess excellent photovoltaic properties but are highly toxic, which hinders their practical application. Unfortunately, all Pb-free alternatives based on Sn and Ge are extremely unstable. Although stable and non-toxic C2 ABX6 double perovskites based on alternating corner-shared AX6 and BX6 octahedra (A=Ag, Cu; B=Bi, Sb) are possible, they have indirect and wide band gaps of over 2 eV. However, is it necessary to keep the corner-shared perovskite structure to retain good photovoltaic properties? Here, we demonstrate another family of photovoltaic halides based on edge-shared AX6 and BX6 octahedra with the general formula Aa Bb Xx (x=a+3 b) such as Ag3 BiI6 , Ag2 BiI5 , AgBiI4 , AgBi2 I7 . As perovskites were named after their prototype oxide CaTiO3 discovered by Lev Perovski, we propose to name these new ABX halides as rudorffites after Walter Rüdorff, who discovered their prototype oxide NaVO2 . We studied structural and optoelectronic properties of several highly stable and promising Ag-Bi-I photovoltaic rudorffites that feature direct band gaps in the range of 1.79-1.83 eV and demonstrated a proof-of-concept FTO/c-m-TiO2 /Ag3 BiI6 /PTAA/Au (FTO: fluorine-doped tin oxide, PTAA: poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], c: compact, m: mesoporous) solar cell with photoconversion efficiency of 4.3 %.


Asunto(s)
Bismuto/química , Compuestos de Calcio/química , Suministros de Energía Eléctrica , Halógenos/química , Óxidos/química , Plata/química , Energía Solar , Titanio/química , Plomo/química , Modelos Moleculares , Conformación Molecular
4.
Opt Express ; 18(6): 5740-5, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20389590

RESUMEN

We report studies of optical Fabry-Perot microcavities based on semiconducting single-wall carbon nanotubes with a quality factor of 160. We experimentally demonstrate a huge photoluminescence signal enhancement by a factor of 30 in comparison with the identical film and by a factor of 180 if compared with a thin film containing non-purified (8,7) nanotubes. Furthermore, the spectral full-width at half-maximum of the photo-induced emission is reduced down to 8 nm with very good directivity at a wavelength of about 1.3 microm. Such results prove the great potential of carbon nanotubes for photonic applications.


Asunto(s)
Iluminación/instrumentación , Mediciones Luminiscentes/instrumentación , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Dispositivos Ópticos , Semiconductores , Diseño de Equipo , Análisis de Falla de Equipo
6.
J Am Chem Soc ; 129(16): 4992-7, 2007 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-17402730

RESUMEN

Single-wall carbon nanotubes (SWCNTs) exhibit resonant absorption localized in specific spectral regions. To expand the light spectrum that can be utilized by SWCNTs, we have encapsulated squarylium dye into SWCNTs and clarified its microscopic structure and photosensitizing function. X-ray diffraction and polarization-resolved optical absorption measurements revealed that the encapsulated dye molecules are located at an off center position inside the tubes and aligned to the nanotube axis. Efficient energy transfer from the encapsulated dye to SWCNTs was clearly observed in the photoluminescence spectra. Enhancement of transient absorption saturation in the S1 state of the semiconducting SWCNTs was detected after the photoexcitation of the encapsulated dye, which indicates that ultrafast (<190 fs) energy transfer occurred from the dye to the SWCNTs.

7.
J Phys Chem B ; 110(35): 17420-4, 2006 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16942079

RESUMEN

A simple and efficient technique is described for measuring photoluminescence (PL) maps of carbon nanotubes (NTs) in the extended IR range (1-2.3 mum). It consists of preparing an NT/surfactant/gelatin film and measuring PL spectra using a combination of a tunable Ti-sapphire laser excitation and FTIR detection. This procedure has been applied to a wide range of single- and double-wall NTs unveiling chirality and diameter distributions that have so far been very difficult to measure. The problems associated with deducing these distributions are discussed by comparing absorption and PL mapping data for NT samples prepared under different conditions.

8.
J Am Chem Soc ; 128(37): 12239-42, 2006 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-16967975

RESUMEN

The dispersion of small-diameter single-walled carbon nanotubes (SWNTs) produced by the CoMoCAT method in tetrahydrofuran (THF) with the use of amine was studied. The absorption, photoluminescence, and Raman spectroscopies showed that the dispersion and centrifugation process leads to an effective separation of metallic SWNTs from semiconducting SWNTs. Since this method is simple and convenient, it is highly applicable to an industrial utilization for widespread applications of SWNTs.

9.
J Am Chem Soc ; 127(29): 10287-90, 2005 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-16028940

RESUMEN

In the applications of single-walled carbon nanotubes (SWNTs), it is extremely important to separate semiconducting and metallic SWNTs. Although several methods have been reported for the separation, only low yields have been achieved at great expense. We show a separation method involving a dispersion-centrifugation process in a tetrahydrofuran solution of amine, which makes metallic SWNTs highly concentrated to 87% in a simple way.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...