Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 11(6): e0157557, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27336907

RESUMEN

The dynamical fluctuations in the rhythms of biological systems provide valuable information about the underlying functioning of these systems. During the past few decades analysis of cardiac function based on the heart rate variability (HRV; variation in R wave to R wave intervals) has attracted great attention, resulting in more than 17000-publications (PubMed list). However, it is still controversial about the underling mechanisms of HRV. In this study, we performed both linear (time domain and frequency domain) and nonlinear analysis of HRV data acquired from humans and animals to identify the relationship between HRV and heart rate (HR). The HRV data consists of the following groups: (a) human normal sinus rhythm (n = 72); (b) human congestive heart failure (n = 44); (c) rabbit sinoatrial node cells (SANC; n = 67); (d) conscious rat (n = 11). In both human and animal data at variant pathological conditions, both linear and nonlinear analysis techniques showed an inverse correlation between HRV and HR, supporting the concept that HRV is dependent on HR, and therefore, HRV cannot be used in an ordinary manner to analyse autonomic nerve activity of a heart.


Asunto(s)
Frecuencia Cardíaca , Modelos Cardiovasculares , Animales , Sistema Nervioso Autónomo , Insuficiencia Cardíaca/fisiopatología , Humanos , Dinámicas no Lineales , Conejos , Nodo Sinoatrial , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...