Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Mol Cell ; 84(3): 463-475.e5, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242128

RESUMEN

Type I CRISPR-Cas systems utilize the RNA-guided Cascade complex to identify matching DNA targets and the nuclease-helicase Cas3 to degrade them. Among the seven subtypes, type I-C is compact in size and highly active in creating large-sized genome deletions in human cells. Here, we use four cryoelectron microscopy snapshots to define its RNA-guided DNA binding and cleavage mechanisms in high resolution. The non-target DNA strand (NTS) is accommodated by I-C Cascade in a continuous binding groove along the juxtaposed Cas11 subunits. Binding of Cas3 further traps a flexible bulge in NTS, enabling NTS nicking. We identified two anti-CRISPR proteins AcrIC8 and AcrIC9 that strongly inhibit Neisseria lactamica I-C function. Structural analysis showed that AcrIC8 inhibits PAM recognition through allosteric inhibition, whereas AcrIC9 achieves so through direct competition. Both Acrs potently inhibit I-C-mediated genome editing and transcriptional modulation in human cells, providing the first off-switches for type I CRISPR eukaryotic genome engineering.


Asunto(s)
Proteínas Asociadas a CRISPR , Edición Génica , Humanos , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , Proteínas Asociadas a CRISPR/metabolismo , ADN/metabolismo , ARN
2.
bioRxiv ; 2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37577534

RESUMEN

Type I CRISPR-Cas systems utilize the RNA-guided Cascade complex to identify matching DNA targets, and the nuclease-helicase Cas3 to degrade them. Among seven subtypes, Type I-C is compact in size and highly active in creating large-sized genome deletions in human cells. Here we use four cryo-electron microscopy snapshots to define its RNA-guided DNA binding and cleavage mechanisms in high resolution. The non-target DNA strand (NTS) is accommodated by I-C Cascade in a continuous binding groove along the juxtaposed Cas11 subunits. Binding of Cas3 further traps a flexible bulge in NTS, enabling efficient NTS nicking. We identified two anti-CRISPR proteins AcrIC8 and AcrIC9, that strongly inhibit N. lactamica I-C function. Structural analysis showed that AcrIC8 inhibits PAM recognition through direct competition, whereas AcrIC9 achieves so through allosteric inhibition. Both Acrs potently inhibit I-C-mediated genome editing and transcriptional modulation in human cells, providing the first off-switches for controllable Type I CRISPR genome engineering.

3.
Mol Cell ; 83(11): 1827-1838.e6, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37267904

RESUMEN

CRISPR-associated transposons (CASTs) are natural RNA-directed transposition systems. We demonstrate that transposon protein TniQ plays a central role in promoting R-loop formation by RNA-guided DNA-targeting modules. TniQ residues, proximal to CRISPR RNA (crRNA), are required for recognizing different crRNA categories, revealing an unappreciated role of TniQ to direct transposition into different classes of crRNA targets. To investigate adaptations allowing CAST elements to utilize attachment sites inaccessible to CRISPR-Cas surveillance complexes, we compared and contrasted PAM sequence requirements in both I-F3b CAST and I-F1 CRISPR-Cas systems. We identify specific amino acids that enable a wider range of PAM sequences to be accommodated in I-F3b CAST elements compared with I-F1 CRISPR-Cas, enabling CAST elements to access attachment sites as sequences drift and evade host surveillance. Together, this evidence points to the central role of TniQ in facilitating the acquisition of CRISPR effector complexes for RNA-guided DNA transposition.


Asunto(s)
Proteínas Asociadas a CRISPR , ARN , ADN/genética , Sistemas CRISPR-Cas , Proteínas Asociadas a CRISPR/genética
4.
Methods Enzymol ; 673: 405-424, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965014

RESUMEN

Type I is the most prevalent CRISPR system found in nature. It can be further defined into six subtypes, from I-A to I-G. Among them, the Type I-A CRISPR-Cas systems are almost exclusively found in hyperthermophilic archaeal organisms. The system achieves RNA-guided DNA degradation through the concerted action of a CRISPR RNA containing complex Cascade and a helicase-nuclease fusion enzyme Cas3. Here, we summarize assays to characterize the biochemical behavior of Cas3. A steep temperature-dependency was found for the helicase component of Cas3HEL, but not the nuclease component HD. This finding enabled us to establish the correct experimental condition to carry out I-A CRISPR-Cas based genome editing in human cells with extremely high efficiency.


Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Proteínas Asociadas a CRISPR/química , ADN Helicasas/química , Endonucleasas/genética , Endonucleasas/metabolismo , Humanos , ARN , ARN Helicasas
5.
Science ; 377(6612): 1278-1285, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36007061

RESUMEN

The CRISPR-Cas type III-E RNA-targeting effector complex gRAMP/Cas7-11 is associated with a caspase-like protein (TPR-CHAT/Csx29) to form Craspase (CRISPR-guided caspase). Here, we use cryo-electron microscopy snapshots of Craspase to explain its target RNA cleavage and protease activation mechanisms. Target-guide pairing extending into the 5' region of the guide RNA displaces a gating loop in gRAMP, which triggers an extensive conformational relay that allosterically aligns the protease catalytic dyad and opens an amino acid side-chain-binding pocket. We further define Csx30 as the endogenous protein substrate that is site-specifically proteolyzed by RNA-activated Craspase. This protease activity is switched off by target RNA cleavage by gRAMP and is not activated by RNA targets containing a matching protospacer flanking sequence. We thus conclude that Craspase is a target RNA-activated protease with self-regulatory capacity.


Asunto(s)
Proteínas Bacterianas , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Caspasas , Planctomicetos , ARN Guía de Kinetoplastida , Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Caspasas/química , Microscopía por Crioelectrón , Planctomicetos/enzimología , Conformación Proteica , ARN Guía de Kinetoplastida/química
6.
Mol Cell ; 82(15): 2754-2768.e5, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35835111

RESUMEN

Type I CRISPR-Cas systems typically rely on a two-step process to degrade DNA. First, an RNA-guided complex named Cascade identifies the complementary DNA target. The helicase-nuclease fusion enzyme Cas3 is then recruited in trans for processive DNA degradation. Contrary to this model, here, we show that type I-A Cascade and Cas3 function as an integral effector complex. We provide four cryoelectron microscopy (cryo-EM) snapshots of the Pyrococcus furiosus (Pfu) type I-A effector complex in different stages of DNA recognition and degradation. The HD nuclease of Cas3 is autoinhibited inside the effector complex. It is only allosterically activated upon full R-loop formation, when the entire targeted region has been validated by the RNA guide. The mechanistic insights inspired us to convert Pfu Cascade-Cas3 into a high-sensitivity, low-background, and temperature-activated nucleic acid detection tool. Moreover, Pfu CRISPR-Cas3 shows robust bi-directional deletion-editing activity in human cells, which could find usage in allele-specific inactivation of disease-causing mutations.


Asunto(s)
Proteínas Asociadas a CRISPR , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , ADN/genética , ADN/metabolismo , Endonucleasas/genética , Edición Génica , Humanos , ARN
7.
Science ; 376(6600): 1476-1481, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35617371

RESUMEN

Class 2 CRISPR effectors Cas9 and Cas12 may have evolved from nucleases in IS200/IS605 transposons. IscB is about two-fifths the size of Cas9 but shares a similar domain organization. The associated ωRNA plays the combined role of CRISPR RNA (crRNA) and trans-activating CRISPR RNA (tracrRNA) to guide double-stranded DNA (dsDNA) cleavage. Here we report a 2.78-angstrom cryo-electron microscopy structure of IscB-ωRNA bound to a dsDNA target, revealing the architectural and mechanistic similarities between IscB and Cas9 ribonucleoproteins. Target-adjacent motif recognition, R-loop formation, and DNA cleavage mechanisms are explained at high resolution. ωRNA plays the equivalent function of REC domains in Cas9 and contacts the RNA-DNA heteroduplex. The IscB-specific PLMP domain is dispensable for RNA-guided DNA cleavage. The transition from ancestral IscB to Cas9 involved dwarfing the ωRNA and introducing protein domain replacements.


Asunto(s)
Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , División del ADN , ARN Guía de Kinetoplastida , Ribonucleoproteínas , Secuencias de Aminoácidos , Proteína 9 Asociada a CRISPR/química , Proteína 9 Asociada a CRISPR/genética , Microscopía por Crioelectrón , Conformación de Ácido Nucleico , Dominios Proteicos , ARN Bacteriano/genética , ARN Guía de Kinetoplastida/química , Ribonucleoproteínas/química
8.
Curr Protoc ; 2(2): e361, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35129865

RESUMEN

CRISPR-Cas systems provide researchers with eukaryotic genome editing tools and therapeutic platforms that make it possible to target disease mutations in somatic organs. Most of these tools employ Type II (e.g., Cas9) or Type V (e.g., Cas12a) CRISPR enzymes to create RNA-guided precise double-strand breaks in the genome. However, such technologies are limited in their capacity to make targeted large deletions. Recently, the Type I CRISPR system, which is prevalent in microbes and displays unique enzymatic features, has been harnessed to effectively create large chromosomal deletions in human cells. Type I CRISPR first uses a multisubunit ribonucleoprotein (RNP) complex called Cascade to find its guide-complementary target site, and then recruits a helicase-nuclease enzyme, Cas3, to travel along and shred the target DNA over a long distance with high processivity. When introduced into human cells as purified RNPs, the CRISPR-Cas3 complex can efficiently induce large genomic deletions of varying lengths (1-100 kb) from the CRISPR-targeted site. Because of this unique editing outcome, CRISPR-Cas3 holds great promise for tasks such as the removal of integrated viral genomes and the interrogation of structural variants affecting gene function and human disease. Here, we provide detailed protocols for introducing large deletions using CRISPR-Cas3. We describe step-by-step procedures for purifying the Type I-E CRISPR proteins Cascade and Cas3 from Thermobifida fusca, electroporating RNPs into human cells, and characterizing DNA deletions using PCR and sequencing. We focus here on human pluripotent stem cells due to their clinical potential, but these protocols will be broadly useful for other cell lines and model organisms for applications including large genomic deletion, full-gene or -chromosome removal, and CRISPR screening for noncoding elements, among others. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Expression and purification of Tfu Cascade RNP Support Protocol 1: Expression and purification of TfuCas3 protein Support Protocol 2: Culture of human pluripotent stem cells Basic Protocol 2: Introduction of Tfu Cascade RNP and Cas3 protein into hPSCs via electroporation Basic Protocol 3: Characterization of genomic DNA lesions using long-range PCR, TOPO cloning, and Sanger sequencing Alternate Protocol: Comprehensive analysis of genomic lesions by Tn5-based next-generation sequencing Support Protocol 3: Single-cell clonal isolation.


Asunto(s)
Proteínas Asociadas a CRISPR , Células Madre Pluripotentes , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Edición Génica , Genómica , Humanos , Células Madre Pluripotentes/metabolismo
9.
Mol Cell ; 82(4): 852-867.e5, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35051351

RESUMEN

Leading CRISPR-Cas technologies employ Cas9 and Cas12 enzymes that generate RNA-guided dsDNA breaks. Yet, the most abundant microbial adaptive immune systems, Type I CRISPRs, are under-exploited for eukaryotic applications. Here, we report the adoption of a minimal CRISPR-Cas3 from Neisseria lactamica (Nla) type I-C system to create targeted large deletions in the human genome. RNP delivery of its processive Cas3 nuclease and target recognition complex Cascade can confer ∼95% editing efficiency. Unexpectedly, NlaCascade assembly in bacteria requires internal translation of a hidden component Cas11 from within the cas8 gene. Furthermore, expressing a separately encoded NlaCas11 is the key to enable plasmid- and mRNA-based editing in human cells. Finally, we demonstrate that supplying cas11 is a universal strategy to systematically implement divergent I-C, I-D, and I-B CRISPR-Cas3 editors with compact sizes, distinct PAM preferences, and guide orthogonality. These findings greatly expand our ability to engineer long-range genome edits.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Eliminación de Gen , Edición Génica , Genoma Humano , Neisseria lactamica/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Células HEK293 , Células HeLa , Humanos , Neisseria lactamica/enzimología , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
10.
Nature ; 598(7881): 515-520, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34588691

RESUMEN

Prokaryotes adapt to challenges from mobile genetic elements by integrating spacers derived from foreign DNA in the CRISPR array1. Spacer insertion is carried out by the Cas1-Cas2 integrase complex2-4. A substantial fraction of CRISPR-Cas systems use a Fe-S cluster containing Cas4 nuclease to ensure that spacers are acquired from DNA flanked by a protospacer adjacent motif (PAM)5,6 and inserted into the CRISPR array unidirectionally, so that the transcribed CRISPR RNA can guide target searching in a PAM-dependent manner. Here we provide a high-resolution mechanistic explanation for the Cas4-assisted PAM selection, spacer biogenesis and directional integration by type I-G CRISPR in Geobacter sulfurreducens, in which Cas4 is naturally fused with Cas1, forming Cas4/Cas1. During biogenesis, only DNA duplexes possessing a PAM-embedded 3'-overhang trigger Cas4/Cas1-Cas2 assembly. During this process, the PAM overhang is specifically recognized and sequestered, but is not cleaved by Cas4. This 'molecular constipation' prevents the PAM-side prespacer from participating in integration. Lacking such sequestration, the non-PAM overhang is trimmed by host nucleases and integrated to the leader-side CRISPR repeat. Half-integration subsequently triggers PAM cleavage and Cas4 dissociation, allowing spacer-side integration. Overall, the intricate molecular interaction between Cas4 and Cas1-Cas2 selects PAM-containing prespacers for integration and couples the timing of PAM processing with the stepwise integration to establish directionality.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Geobacter/enzimología , Bases de Datos Genéticas , Modelos Moleculares , Conformación Molecular , Motivos de Nucleótidos
11.
Science ; 373(6556): 768-774, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34385391

RESUMEN

CRISPR-associated transposition systems allow guide RNA-directed integration of a single DNA cargo in one orientation at a fixed distance from a programmable target sequence. We used cryo-electron microscopy (cryo-EM) to define the mechanism that underlies this process by characterizing the transposition regulator, TnsC, from a type V-K CRISPR-transposase system. In this scenario, polymerization of adenosine triphosphate-bound TnsC helical filaments could explain how polarity information is passed to the transposase. TniQ caps the TnsC filament, representing a universal mechanism for target information transfer in Tn7/Tn7-like elements. Transposase-driven disassembly establishes delivery of the element only to unused protospacers. Finally, TnsC transitions to define the fixed point of insertion, as revealed by structures with the transition state mimic ADP•AlF3 These mechanistic findings provide the underpinnings for engineering CRISPR-associated transposition systems for research and therapeutic applications.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Cianobacterias/química , Elementos Transponibles de ADN , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Microscopía por Crioelectrón , Cianobacterias/genética , Cianobacterias/metabolismo , ADN Bacteriano/metabolismo , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , ARN Bacteriano/metabolismo , Transposasas/química , Transposasas/metabolismo
12.
Methods Mol Biol ; 2323: 39-47, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34086272

RESUMEN

Recent studies have solidified RNA's regulatory and catalytic roles in all life forms. Understanding such functions necessarily requires high-resolution understanding of the molecular structure of RNA. Whereas proteins tend to fold into a globular structure and gain most of the folding energy from tertiary interactions, RNAs behave the opposite. Their tertiary structure tends to be irregular and porous, and they gain the majority of their folding free energy from secondary structure formation. These properties lead to higher conformational dynamics in RNA structure. As a result, structure determination proves more difficult for RNA using X-ray crystallography and other structural biology tools. Despite the painstaking effort to obtain large quantities of chemically pure RNA molecules, many still fail to crystallize due to the presence of conformational impurity. To overcome the challenge, we developed a new method to crystallize the RNA of interest as a tRNA chimera. In most cases, tRNA fusion significantly increased the conformational purity of our RNA target, improved the success rate of obtaining RNA crystals, and made the subsequent structure determination process much easier. Here in this chapter we describe our protocol to design, stabilize, express, and purify an RNA target as a tRNA chimera. While this method continues a series of work utilizing well-behaving macromolecules/motifs as "crystallization tags" (Ke and Wolberger. Protein Sci 12:306-312, 2003; Ferre-D'Amare and Doudna. J Mol Biol 295:541-556, 2000; Koldobskaya et al . Nat Struct Mol Biol 18:100-106, 2011; Ferre-D'Amare et al. J Mol Biol 279:621-631, 1998), it was inspired by the work of Ponchon and Dardel to utilize tRNA scaffold to express, stabilize, and purify RNA of interest in vivo (Ponchon and Dardel. Nat Methods 4:571-576, 2007). The "tRNA scaffold," where the target RNA is inserted into a normal tRNA, replacing the anticodon sequence, can effectively help the RNA fold, express in various sources and even assist crystallization and phase determination. This approach applies to any generic RNA whose 5' and 3' ends join and form a helix.


Asunto(s)
Conformación de Ácido Nucleico , ARN de Transferencia/química , Cristalización , Escherichia coli , Modelos Moleculares , Plásmidos/genética , Reacción en Cadena de la Polimerasa/métodos , ARN/biosíntesis , ARN/química , Estabilidad del ARN , ARN de Transferencia/aislamiento & purificación , Transcripción Genética
13.
Nat Struct Mol Biol ; 27(5): 489-499, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32367067

RESUMEN

Cas1 integrase associates with Cas2 to insert short DNA fragments into a CRISPR array, establishing nucleic acid memory in prokaryotes. Here we applied single-molecule FRET methods to the Enterococcus faecalis (Efa) Cas1-Cas2 system to establish a kinetic framework describing target-searching, integration, and post-synapsis events. EfaCas1-Cas2 on its own is not able to find the CRISPR repeat in the CRISPR array; it only does so after prespacer loading. The leader sequence adjacent to the repeat further stabilizes EfaCas1-Cas2 contacts, enabling leader-side integration and subsequent spacer-side integration. The resulting post-synaptic complex (PSC) has a surprisingly short mean lifetime. Remarkably, transcription effectively resolves the PSC, and we predict that this is a conserved mechanism that ensures efficient and directional spacer integration in many CRISPR systems. Overall, our study provides a complete model of spacer acquisition, which can be harnessed for DNA-based information storage and cell lineage tracing technologies.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Enterococcus faecalis/enzimología , Integrasas/metabolismo , Electroporación , Enterococcus faecalis/genética , Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Integrasas/genética , Cinética , Microorganismos Modificados Genéticamente , Mutación , Transcripción Genética
14.
Nat Struct Mol Biol ; 26(12): 1106-1113, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740853

RESUMEN

T-box riboregulators are a class of cis-regulatory RNAs that govern the bacterial response to amino acid starvation by binding, decoding and reading the aminoacylation status of specific transfer RNAs. Here we provide a high-resolution crystal structure of a full-length T-box from Mycobacterium tuberculosis that explains tRNA decoding and aminoacylation sensing by this riboregulator. Overall, the T-box consists of decoding and aminoacylation sensing modules bridged by a rigid pseudoknot structure formed by the mid-region domains. Stem-I and the Stem-II S-turn assemble a claw-like decoding module, while the antiterminator, Stem-III, and the adjacent linker form a tightly interwoven aminoacylation sensing module. The uncharged tRNA is selectively recognized by an unexpected set of favorable contacts from the linker region in the aminoacylation sensing module. A complex structure with a charged tRNA mimic shows that the extra moiety dislodges the linker, which is indicative of the possible chain of events that lead to alternative base-pairing and altered expression output.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/metabolismo , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Dominio T Box/metabolismo , Aminoacilación , Proteínas Bacterianas/química , Emparejamiento Base , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Mycobacterium tuberculosis/química , Conformación de Ácido Nucleico , Conformación Proteica , ARN Bacteriano/química , ARN de Transferencia/química , Riboswitch , Proteínas de Dominio T Box/química , Tuberculosis/microbiología
15.
Nat Commun ; 10(1): 4304, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31541094

RESUMEN

The widespread Mn2+-sensing yybP-ykoY riboswitch controls the expression of bacterial Mn2+ homeostasis genes. Here, we first determine the crystal structure of the ligand-bound yybP-ykoY riboswitch aptamer from Xanthomonas oryzae at 2.96 Å resolution, revealing two conformations with docked four-way junction (4WJ) and incompletely coordinated metal ions. In >100 µs of MD simulations, we observe that loss of divalents from the core triggers local structural perturbations in the adjacent docking interface, laying the foundation for signal transduction to the regulatory switch helix. Using single-molecule FRET, we unveil a previously unobserved extended 4WJ conformation that samples transient docked states in the presence of Mg2+. Only upon adding sub-millimolar Mn2+, however, can the 4WJ dock stably, a feature lost upon mutation of an adenosine contacting Mn2+ in the core. These observations illuminate how subtly differing ligand preferences of competing metal ions become amplified by the coupling of local with global RNA dynamics.


Asunto(s)
Magnesio/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Riboswitch/fisiología , Transducción de Señal , Xanthomonas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Ligandos , Manganeso/metabolismo , Modelos Moleculares , Conformación Molecular , Simulación de Dinámica Molecular , Mutación , Conformación de Ácido Nucleico , ARN Bacteriano/genética
16.
Nucleic Acids Res ; 47(18): 9818-9828, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31396619

RESUMEN

Packaging of phage phi29 genome requires the ATPase gp16 and prohead RNA (pRNA). The highly conserved pRNA forms the interface between the connector complex and gp16. Understanding how pRNA interacts with gp16 under packaging conditions can shed light on the molecular mechanism of the packaging motor. Here, we present 3D models of the pRNA-gp16 complex and its conformation change in response to ATP or ADP binding. Using a combination of crystallography, small angle X-ray scattering and chemical probing, we find that the pRNA and gp16 forms a 'Z'-shaped complex, with gp16 specifically binds to pRNA domain II. The whole complex closes in the presence of ATP, and pRNA domain II rotates open as ATP hydrolyzes, before resetting after ADP is released. Our results suggest that pRNA domain II actively participates in the packaging process.


Asunto(s)
Fagos de Bacillus/genética , Empaquetamiento del ADN/genética , ARN Viral/genética , Proteínas Virales/genética , Adenosina Difosfato/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/genética , Sitios de Unión , Cristalografía por Rayos X , ADN Viral/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Conformación de Ácido Nucleico , ARN Viral/química , Dispersión del Ángulo Pequeño , Transducción de Señal/genética , Proteínas Virales/química , Ensamble de Virus/genética
17.
Mol Cell ; 74(5): 936-950.e5, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-30975459

RESUMEN

CRISPR-Cas systems enable microbial adaptive immunity and provide eukaryotic genome editing tools. These tools employ a single effector enzyme of type II or V CRISPR to generate RNA-guided, precise genome breaks. Here we demonstrate the feasibility of using type I CRISPR-Cas to effectively introduce a spectrum of long-range chromosomal deletions with a single RNA guide in human embryonic stem cells and HAP1 cells. Type I CRISPR systems rely on the multi-subunit ribonucleoprotein (RNP) complex Cascade to identify DNA targets and on the helicase-nuclease enzyme Cas3 to degrade DNA processively. With RNP delivery of T. fusca Cascade and Cas3, we obtained 13%-60% editing efficiency. Long-range PCR-based and high-throughput-sequencing-based lesion analyses reveal that a variety of deletions, ranging from a few hundred base pairs to 100 kilobases, are created upstream of the target site. These results highlight the potential utility of type I CRISPR-Cas for long-range genome manipulations and deletion screens in eukaryotes.


Asunto(s)
Sistemas CRISPR-Cas/genética , Células Madre Embrionarias Humanas , ARN Guía de Kinetoplastida/genética , Eliminación de Secuencia/genética , Endonucleasas/química , Endonucleasas/genética , Escherichia coli/genética , Edición Génica/métodos , Genoma Humano/genética , Genómica , Humanos , Ribonucleoproteínas/genética
18.
Methods Enzymol ; 616: 27-41, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30691647

RESUMEN

Type I CRISPR-Cas, the most prevalent CRISPR system, features a sequential target searching and degradation process. First, the multisubunit surveillance complex Cascade recognizes the matching dsDNA target flanked by protospacer adjacent motif (PAM), promotes the heteroduplex formation between CRISPR RNA (crRNA) and the target strand (TS) DNA, and displaces the nontarget strand (NTS) DNA, resulting in R-loop formation. The helicase-nuclease fusion enzyme Cas3 is then specifically recruited to Cascade/R-loop, nicks, and processively degrades the DNA target. Here, by using Type I-E CRISPR-Cas system from Thermobifida fusca, we provide protocols for the biochemical reconstitution of the Cascade/R-loop and Cascade/R-loop/Cas3 complexes that allowed for high-resolution structure determination and mechanism investigation. The procedures may be applicable for structural and mechanistic investigations of other Type I CRISPR-Cas systems, and may serve as a reference for the study of other multicomponent protein-nucleic acid complexes.


Asunto(s)
Actinomycetales/genética , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Ribonucleoproteínas/genética , Actinomycetales/química , Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Clonación Molecular/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Conformación de Ácido Nucleico , Conformación Proteica , Ribonucleoproteínas/química
19.
Methods Enzymol ; 616: 43-59, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30691654

RESUMEN

Fluorescent labeling of proteins is a critical requirement for single-molecule imaging studies. Many protein labeling strategies require harsh conditions or large epitopes that can inactivate the target protein, either by decreasing the protein's enzymatic activity or by blocking protein-protein interactions. Here, we provide a detailed protocol to efficiently label CRISPR-Cas complexes with a small fluorescent peptide via sortase-mediated transpeptidation. The sortase tag consists of just a few amino acids that are specifically recognized at either the N- or the C-terminus, making this strategy advantageous when the protein is part of a larger complex. Sortase is active at high ionic strength, 4°C, and with a broad range of organic fluorophores. We discuss the design, optimization, and single-molecule fluorescent imaging of CRISPR-Cas complexes on DNA curtains. Sortase-mediated transpeptidation is a versatile addition to the protein labeling toolkit.


Asunto(s)
Proteínas Asociadas a CRISPR/análisis , Sistemas CRISPR-Cas , Cisteína Endopeptidasas/análisis , Proteínas de Escherichia coli/análisis , Escherichia coli/química , Colorantes Fluorescentes/análisis , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Escherichia coli/citología , Modelos Moleculares , Imagen Óptica/métodos , Coloración y Etiquetado/métodos
20.
Cell ; 175(4): 934-946.e15, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30343903

RESUMEN

CRISPR-Cas systems confer an adaptive immunity against viruses. Following viral injection, Cas1-Cas2 integrates segments of the viral genome (spacers) into the CRISPR locus. In type I CRISPR-Cas systems, efficient "primed" spacer acquisition and viral degradation (interference) require both the Cascade complex and the Cas3 helicase/nuclease. Here, we present single-molecule characterization of the Thermobifida fusca (Tfu) primed acquisition complex (PAC). We show that TfuCascade rapidly samples non-specific DNA via facilitated one-dimensional diffusion. Cas3 loads at target-bound Cascade and the Cascade/Cas3 complex translocates via a looped DNA intermediate. Cascade/Cas3 complexes stall at diverse protein roadblocks, resulting in a double strand break at the stall site. In contrast, Cas1-Cas2 samples DNA transiently via 3D collisions. Moreover, Cas1-Cas2 associates with Cascade and translocates with Cascade/Cas3, forming the PAC. PACs can displace different protein roadblocks, suggesting a mechanism for long-range spacer acquisition. This work provides a molecular basis for the coordinated steps in CRISPR-based adaptive immunity.


Asunto(s)
Actinomycetales/enzimología , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/química , ADN Viral/metabolismo , Multimerización de Proteína , Imagen Individual de Molécula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...