Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2853, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606352

RESUMEN

The second near-infrared (NIR-II) window is a fundamental modality for deep-tissue in vivo imaging. However, it is challenging to synthesize NIR-II probes with high quantum yields (QYs), good biocompatibility, satisfactory pharmacokinetics, and tunable biological properties. Conventional long-wavelength probes, such as inorganic probes (which often contain heavy metal atoms in their scaffolds) and organic dyes (which contain large π-conjugated groups), exhibit poor biosafety, low QYs, and/or uncontrollable pharmacokinetic properties. Herein, we present a bioengineering strategy that can replace the conventional chemical synthesis methods for generating NIR-II contrast agents. We use a genetic engineering technique to obtain a series of albumin fragments and recombinant proteins containing one or multiple domains that form covalent bonds with chloro-containing cyanine dyes. These albumin variants protect the inserted dyes and remarkably enhance their brightness. The albumin variants can also be genetically edited to develop size-tunable complexes with precisely tailored pharmacokinetics. The proteins can also be conjugated to biofunctional molecules without impacting the complexed dyes. This combination of albumin mutants and clinically-used cyanine dyes can help widen the clinical application prospects of NIR-II fluorophores.


Asunto(s)
Imagen Óptica , Quinolinas , Albúminas , Colorantes Fluorescentes/química , Ingeniería Genética , Ionóforos , Imagen Óptica/métodos
2.
Adv Drug Deliv Rev ; 161-162: 145-160, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32827558

RESUMEN

Vaccines hold enormous potential in cancer immunotherapy by stimulating the body's immune response; unfortunately, the clinical response rates of cancer vaccines are less than 30%. Nanovaccines show the potential to enhance the treatment efficacy of conventional vaccines due to their unique properties, such as efficient co-delivery of cocktail to the secondary lymphatic system, high tumor accumulation and penetration, and customizable delivery of antigens and adjuvants. Meanwhile, the non-invasive visualization of vaccines after their delivery can yield information about in vivo distribution and performance, and aid in their subsequent optimization and translational studies. In this review, we summarize the strategies for the spatiotemporal visualization of nanovaccines in lymph nodes, including whole-body in vivo imaging, intravital organ/cell imaging, and ex vivo tissue/cell imaging. The application of imaging modalities in nanovaccine development is discussed. Moreover, strategies to achieve different combinations of imaging modalities are proposed.


Asunto(s)
Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/farmacología , Diagnóstico por Imagen/métodos , Inmunoterapia/métodos , Ganglios Linfáticos/inmunología , Adyuvantes Inmunológicos , Animales , Células Presentadoras de Antígenos/metabolismo , Antígenos de Neoplasias/biosíntesis , Vacunas contra el Cáncer/farmacocinética , Células Dendríticas/metabolismo , Humanos , Ganglios Linfáticos/efectos de los fármacos , Imagen Multimodal , Nanopartículas , Linfocitos T/metabolismo , Linfocitos T Citotóxicos/metabolismo
3.
ACS Nano ; 12(11): 11355-11365, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30375848

RESUMEN

Cancer is one of the leading causes of morbidity and mortality in the world, but more cancer therapies are needed to complement existing regimens due to problems of existing cancer therapies. Herein, we term ferroptosis therapy (FT) as a form of cancer therapy and hypothesize that the FT efficacy can be significantly improved via accelerating the Fenton reaction by simultaneously increasing the local concentrations of all reactants (Fe2+, Fe3+, and H2O2) in cancer cells. Thus, Fenton-reaction-acceleratable magnetic nanoparticles, i.e., cisplatin (CDDP)-loaded Fe3O4/Gd2O3 hybrid nanoparticles with conjugation of lactoferrin (LF) and RGD dimer (RGD2) (FeGd-HN@Pt@LF/RGD2), were exploited in this study for FT of orthotopic brain tumors. FeGd-HN@Pt@LF/RGD2 nanoparticles were able to cross the blood-brain barrier because of its small size (6.6 nm) and LF-receptor-mediated transcytosis. FeGd-HN@Pt@LF/RGD2 can be internalized into cancer cells by integrin αvß3-mediated endocytosis and then release Fe2+, Fe3+, and CDDP upon endosomal uptake and degradation. Fe2+ and Fe3+ can directly participate in the Fenton reaction, whereas the CDDP can indirectly produce H2O2 to further accelerate the Fenton reaction. The acceleration of Fenton reaction generates reactive oxygen species to induce cancer cell death. FeGd-HN@Pt@LF/RGD2 successfully delivered reactants involved in the Fenton reaction to the tumor site and led to significant inhibition of tumor growth. Finally, the intrinsic magnetic resonance imaging (MRI) capability of the nanoparticles was used to assess and monitor tumor response to FT (self-MRI monitoring).


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Cisplatino/uso terapéutico , Óxido Ferrosoférrico/química , Gadolinio/química , Nanopartículas de Magnetita/química , Antineoplásicos/química , Neoplasias Encefálicas/patología , Proliferación Celular/efectos de los fármacos , Cisplatino/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...