Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Ophthalmol ; 17(8): 1519-1530, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156787

RESUMEN

Owing to the rapid development of modern computer technologies, artificial intelligence (AI) has emerged as an essential instrument for intelligent analysis across a range of fields. AI has been proven to be highly effective in ophthalmology, where it is frequently used for identifying, diagnosing, and typing retinal diseases. An increasing number of researchers have begun to comprehensively map patients' retinal diseases using AI, which has made individualized clinical prediction and treatment possible. These include prognostic improvement, risk prediction, progression assessment, and interventional therapies for retinal diseases. Researchers have used a range of input data methods to increase the accuracy and dependability of the results, including the use of tabular, textual, or image-based input data. They also combined the analyses of multiple types of input data. To give ophthalmologists access to precise, individualized, and high-quality treatment strategies that will further optimize treatment outcomes, this review summarizes the latest findings in AI research related to the prediction and guidance of clinical diagnosis and treatment of retinal diseases.

2.
Eur J Med Chem ; 272: 116473, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38718625

RESUMEN

Fibroblast growth factor receptor 2 (FGFR2) represents an appealing therapeutic target for multiple cancers, yet no selective FGFR2 inhibitors have been approved for clinical use to date. Here, we report the discovery of a series of new selective, irreversible FGFR2 inhibitors. The representative compound LHQ490 potently inhibited FGFR2 kinase activity with an IC50 of 5.2 nM, and was >61-, >34-, and >293-fold selective against FGFR1, FGFR3, and FGFR4, respectively. LHQ490 also exhibited high selectivity in a panel of 416 kinases. Cell-based studies revealed that LHQ490 efficiently suppressed the proliferation of BaF3-FGFR2 cells with an IC50 value of 1.4 nM, and displayed >70- and >714-fold selectivity against BaF3-FGFR1 and the parental BaF3 cells, respectively. More importantly, LHQ490 potently suppressed the FGFR2 signaling pathways, selectively inhibited FGFR2-driven cancer cell proliferation, and induced apoptosis of FGFR2-driven cancer cells. Taken together, this study provides a potent and highly selective FGFR2 inhibitor for further development of FGFR2-targeted therapeutic agents.


Asunto(s)
Proliferación Celular , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Humanos , Proliferación Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral
4.
Heliyon ; 10(8): e29504, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38655349

RESUMEN

Despite growing evidence suggesting an important contribution of Tumor Protein P53 Inducible Protein 11 (TP53I11) in cancer progression, the role of TP53I11 remains unclear. Our first pan-cancer analysis of TP53I11 showed some tumor tissues displayed reduced TP53I11 expression compared to normal tissues, while others exhibited high TP53I11 expression. Meanwhile, TP53I11 expression carries a particular pan-cancer risk, as high TP53I11 expression levels are detrimental to survival for BRCA, KIRP, MESO, and UVM, but to beneficial survival for KIRC. We demonstrated that TP53I11 expression negatively correlates with DNA methylation in most cancers, and the S14 residue of TP53I11 is phosphorylated in several cancer types. Additionally, TP53I11 was found to be associated with endothelial cells in pan-cancer, and functional enrichment analysis provided strong evidence for its role in tumor angiogenesis. In vitro angiogenesis assays confirmed that TP53I11 can promote angiogenic function of human umbilical vein endothelial cells (HUVECs) in vitro. Mechanistic investigations reveal that TP53I11 is transcriptionally up-regulated by HIF2A under hypoxia.

5.
Nat Prod Res ; : 1-7, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38534130

RESUMEN

Five trichothecenes including a new one, together with two previously undescribed benzene derivatives were isolated from the solid culture of Trichothecium sp. Their structures were established by 1D and 2D NMR data in conjunction with HR-ESI-MS analysis. Compounds 1-5 exhibited cytotoxicity against MCF-7 cell lines at various levels ranging from IC50 of 7.23 to 16.95 µM. Compound 6 decreased the concentration of blood lipids in zebra fish at the concentration of 20 µM.

6.
Theranostics ; 14(5): 2190-2209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505600

RESUMEN

Here we explored the potential role of Gαi2 (G protein subunit alpha i2) in endothelial cell function and angiogenesis. Methods: Genetic methodologies such as shRNA, CRISPR/Cas9, dominant negative mutation, and overexpression were utilized to modify Gαi2 expression or regulate its function. Their effects on endothelial cell functions were assessed in vitro. In vivo, the endothelial-specific Gαi2 shRNA adeno-associated virus (AAV) was utilized to silence Gαi2 expression. The impact of this suppression on retinal angiogenesis in control mice and streptozotocin (STZ)-induced diabetic retinopathy (DR) mice was analyzed. Results: Analysis of single-cell RNA sequencing data revealed Gαi2 (GNAI2) was predominantly expressed in retinal endothelial cells and expression was increased in retinal endothelial cells following oxygen-induced retinopathy (OIR) in mice. Moreover, transcriptome analysis linking Gαi2 to angiogenesis-related processes/pathways, supported by increased Gαi2 expression in experimental OIR mouse retinas, highlighted its possible role in angiogenesis. In various endothelial cell types, shRNA-induced silencing and CRISPR/Cas9-mediated knockout (KO) of Gαi2 resulted in substantial reductions in cell proliferation, migration, invasion, and capillary tube formation. Conversely, Gαi2 over-expression in endothelial cells induced pro-angiogenic activities, enhancing cell proliferation, migration, invasion, and capillary tube formation. Furthermore, our investigation revealed a crucial role of Gαi2 in NFAT (nuclear factor of activated T cells) activation, as evidenced by the down-regulation of NFAT-luciferase reporter activity and pro-angiogenesis NFAT-targeted genes (Egr3, CXCR7, and RND1) in Gαi2-silenced or -KO HUVECs, which were up-regulated in Gαi2-overexpressing endothelial cells. Expression of a dominant negative Gαi2 mutation (S48C) also down-regulated NFAT-targeted genes, slowing proliferation, migration, invasion, and capillary tube formation in HUVECs. Importantly, in vivo experiments revealed that endothelial Gαi2 knockdown inhibited retinal angiogenesis in mice, with a concomitant down-regulation of NFAT-targeted genes in mouse retinal tissue. In contrast, Gαi2 over-expression in endothelial cells enhanced retinal angiogenesis in mice. Single-cell RNA sequencing data confirmed increased levels of Gαi2 specifically in retinal endothelial cells of mice with streptozotocin (STZ)-induced diabetic retinopathy (DR). Importantly, endothelial Gαi2 silencing ameliorated retinal pathological angiogenesis in DR mice. Conclusion: Our study highlights a critical role for Gαi2 in NFAT activation, endothelial cell activation and angiogenesis, offering valuable insights into potential therapeutic strategies for modulating these processes.


Asunto(s)
Retinopatía Diabética , Ratones , Animales , Retinopatía Diabética/tratamiento farmacológico , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Subunidad alfa de la Proteína de Unión al GTP Gi2/farmacología , Células Endoteliales/metabolismo , Angiogénesis , Estreptozocina/efectos adversos , Oxígeno/metabolismo , ARN Interferente Pequeño/metabolismo , Proliferación Celular
7.
Genomics ; 116(1): 110776, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38163571

RESUMEN

The death of retinal ganglion cells (RGCs) can cause irreversible injury in visual function. Clarifying the mechanism of RGC degeneration is critical for the development of therapeutic strategies. Circular RNAs (circRNAs) are important regulators in many biological and pathological processes. Herein, we performed circRNA microarrays to identify dysregulated circRNAs following optic nerve crush (ONC). The results showed that 221 circRNAs were differentially expressed between ONC retinas and normal retinas. Notably, the levels of circular RNA-Dcaf6 (cDcaf6) expression in aqueous humor of glaucoma patients were higher than that in cataract patients. cDcaf6 silencing could reduce oxidative stress-induced RGC apoptosis in vitro and alleviate retinal neurodegeneration in vivo as shown by increased neuronal nuclei antigen (NeuN, neuronal bodies) and beta-III-tubulin (TUBB3, neuronal filaments) staining and reduced glial fibrillary acidic protein (GFAP, activated glial cells) and vimentin (activated glial cells) staining. Collectively, this study identifies a promising target for treating retinal neurodegeneration.


Asunto(s)
Traumatismos del Nervio Óptico , ARN Circular , Animales , Humanos , Modelos Animales de Enfermedad , Nervio Óptico/metabolismo , Nervio Óptico/patología , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/metabolismo , Retina , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , ARN Circular/genética , ARN Circular/metabolismo
8.
Front Chem ; 11: 1259569, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37867998

RESUMEN

Drug-induced liver injury (DILI) is one of the most common causes of a drug being withdrawn, and identifying the culprit drugs and the host factors at risk of causing DILI has become a current challenge. Recent studies have found that immune status plays a considerable role in the development of DILI. In this study, DILI-related differentially expressed genes mediated by immunoinflammatory cytokines were obtained from the Gene Expression Omnibus (GEO) database to predict the occurrence of DILI (named the DILI predictive gene set, DILI_PGS), and the predictability of the DILI_PGS was verified using the Connectivity Map (CMap) and LiverTox platforms. The results obtained DILI_PGS from the GEO database could predict 81.25% of liver injury drugs. In addition, the Coexpedia platform was used to predict the DILI_PGS-related characteristics of common host diseases and found that the DILI_PGS mainly involved immune-related diseases and tumor-related diseases. Then, animal models of immune stress (IS) and immunosuppressive (IP) were selected to simulate the immune status of the above diseases. Meanwhile, psoralen, a main component derived from Psoralea corylifolia Linn. with definite hepatotoxicity, was selected as an experimental drug with highly similar molecular fingerprints to three idiosyncratic hepatotoxic drugs (nefazodone, trovafloxacin, and nimesulide) from the same DILI_PGS dataset. The animal experiment results found a single administration of psoralen could significantly induce liver injury in IS mice, while there was no obvious liver function change in IP mice by repeatedly administering the same dose of psoralen, and the potential mechanism of psoralen-induced liver injury in IS mice may be related to regulating the expression of the TNF-related pathway. In conclusion, this study constructed the DILI_PGS with high accuracy to predict the occurrence of DILI and preliminarily identified the characteristics of host factors inducing DILI.

9.
Cell Death Dis ; 14(10): 700, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880221

RESUMEN

We here tested the potential activity and the underlying mechanisms of neuroligin-3 (NLGN3) against ischemia-reperfusion-induced neuronal cell injury. In SH-SY5Y neuronal cells and primary murine cortical neurons, NLGN3 activated Akt-mTOR and Erk signalings, and inhibited oxygen and glucose deprivation (OGD)/re-oxygenation (OGD/R)-induced cytotoxicity. Akt activation was required for NLGN3-induced neuroprotection. Gαi1/3 mediated NLGN3-induced downstream signaling activation. NLGN3-induced Akt-S6K1 activation was largely inhibited by Gαi1/3 silencing or knockout. Significantly, NLGN3-induced neuroprotection against OGD/R was almost abolished by Gαi1/3 silencing or knockout. In vivo, the middle cerebral artery occlusion (MCAO) procedure induced NLGN3 cleavage and secretion, and increased its expression and Akt activation in mouse brain tissues. ADAM10 (A Disintegrin and Metalloproteinase 10) inhibition blocked MCAO-induced NLGN3 cleavage and secretion, exacerbating ischemic brain injury in mice. Neuronal silencing of NLGN3 or Gαi1/3 in mice also inhibited Akt activation and intensified MCAO-induced ischemic brain injury. Conversely, neuronal overexpression of NLGN3 increased Akt activation and alleviated MCAO-induced ischemic brain injury. Together, NLGN3 activates Gαi1/3-Akt signaling to protect neuronal cells from ischemia-reperfusion injury.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Neuroblastoma , Daño por Reperfusión , Animales , Humanos , Ratones , Lesiones Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Neuroblastoma/metabolismo , Neuronas/metabolismo , Oxígeno/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Daño por Reperfusión/metabolismo
10.
Theranostics ; 13(7): 2319-2336, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153740

RESUMEN

Netrin-1 binds to the high-affinity receptor CD146 to activate downstream signaling and angiogenesis. Here, we examine the role and underlying mechanisms of G protein subunit alpha i1 (Gαi1) and Gαi3 in Netrin-1-induced signaling and pro-angiogenic activity. In mouse embryonic fibroblasts (MEFs) and endothelial cells, Netrin-1-induced Akt-mTOR (mammalian target of rapamycin) and Erk activation was largely inhibited by silencing or knockout of Gαi1/3, whereas signaling was augmented following Gαi1/3 overexpression. Netrin-1 induced Gαi1/3 association with CD146, required for CD146 internalization, Gab1 (Grb2 associated binding protein 1) recruitment and downstream Akt-mTOR and Erk activation. Netrin-1-induced signaling was inhibited by CD146 silencing, Gab1 knockout, or Gαi1/3 dominant negative mutants. Netrin-1-induced human umbilical vein endothelial cell (HUVEC) proliferation, migration and tube formation were inhibited by Gαi1/3 short hairpin RNA (shRNA), but were potentiated by ectopic Gαi1/3 overexpression. In vivo, intravitreous injection of Netrin-1 shRNA adeno-associated virus (AAV) significantly inhibited Akt-mTOR and Erk activation in murine retinal tissues and reduced retinal angiogenesis. Endothelial knockdown of Gαi1/3 significantly inhibited Netrin1-induced signaling and retinal angiogenesis in mice. Netrin-1 mRNA and protein expression were significantly elevated in retinal tissues of diabetic retinopathy (DR) mice. Importantly, silence of Netrin-1, by intravitreous Netrin-1 shRNA AAV injection, inhibited Akt-Erk activation, pathological retinal angiogenesis and retinal ganglion cells degeneration in DR mice. Lastly, Netrin-1 and CD146 expression is significantly increased in the proliferative retinal tissues of human proliferative diabetic retinopathy patients. Together, Netrin-1 induces CD146-Gαi1/3-Gab1 complex formation to mediate downstream Akt-mTOR and Erk activation, important for angiogenesis in vitro and in vivo.


Asunto(s)
Retinopatía Diabética , Proteínas Proto-Oncogénicas c-akt , Humanos , Animales , Ratones , Antígeno CD146/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Netrina-1 , Fibroblastos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , ARN Interferente Pequeño , Proteínas Portadoras , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...