Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 16(4): 515-523, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38205668

RESUMEN

Nerve agents are the most toxic chemical warfare agents that pose severe threat to human health and public security. In this work, we developed a novel fluorescent probe NZNN based on naphthylimide and o-phenylenediamine to detect nerve agent mimic diethylchlorophosphonate (DCP). DCP underwent a specific nucleophilic reaction with the o-phenylenediamine group of NZNN to produce a significant fluorescence turn-on response with high selectivity, exceptional linearity, bright fluorescence, rapid response (<6 s) and a low detection limit (30.1 nM). Furthermore, a portable sensing device was fabricated for real-time detection of DCP vapor with excellent performance. This portable and sensitive device is favorable for monitoring environmental pollution and defense against chemical warfare agents.


Asunto(s)
Sustancias para la Guerra Química , Agentes Nerviosos , Fenilendiaminas , Humanos , Colorantes Fluorescentes , Sustancias para la Guerra Química/análisis , Compuestos Organofosforados
2.
Food Chem ; 438: 138044, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37995585

RESUMEN

Nitrite is a carcinogenic substance in food. Excessive consumption of nitrite severely endangers human health. However, rapid and accurate quantification of nitrite by a simple tool is still very challenging. In this work, we designed a practical sensing platform based on 8-(o-phenylenediamine)-boron dipyrromethene (BDP-OPD) to determine nitrite in food. BDP-OPD can take a specific diazotization-cyclization cascade reaction with nitrite to form boron dipyrromethene (BODIPY), giving rise to a remarkable chromogenic reaction along with high contrast fluorescence turn-on response towards nitrite. BDP-OPD has high sensitivity, rapid response, and good selectivity. Furthermore, a portable smartphone-based fluorescence device integrated with a self-programmed Python program was fabricated, which has been successfully used to determine nitrite in food with the advantages of rapid response, low cost, ease of operation, portability, and satisfactory recoveries (92-112%). The good sensing performance rendered BDP-OPD a promising fluorescence platform for on-site visual detection of nitrite.


Asunto(s)
Compuestos de Boro , Nitritos , Humanos , Espectrometría de Fluorescencia , Teléfono Inteligente , Colorantes Fluorescentes , Límite de Detección
3.
Anal Chim Acta ; 1254: 341125, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37005030

RESUMEN

Spoiled meat poses a great challenge to food security and human health, which should be addressed by the early monitoring and warning of the meat freshness. We herein exploited a molecular engineering strategy to construct a set of fluorescence probes (PTPY, PTAC, and PTCN) with phenothiazine as fluorophore and cyanovinyl as recognition site for the facile and efficient monitoring of meat freshness. These probes produce an obvious fluorescence color transition from dark red to bright cyan in response to cadaverine (Cad) through the nucleophilic addition/elimination reaction. The sensing performances were elaborately improved to achieve quick response (16 s), low detection limit (LOD = 3.9 nM), and high contrast fluorescence color change by enhancing the electron-withdrawing strength of cyanovinyl moiety. Furthermore, PTCN test strips were fabricated for portable and naked-eye detection of Cad vapor with fluorescence color change from crimson to cyan, and accurate determination of Cad vapor level with RGB color (red, green, blue) mode analysis. The test strips were employed to detect the freshness of real beef samples, and demonstrated a good capability of non-destructive, non-contact and visual screening meat freshness on site.


Asunto(s)
Colorantes Fluorescentes , Carne , Animales , Bovinos , Humanos , Carne/análisis , Espectrometría de Fluorescencia
4.
Anal Chem ; 94(44): 15423-15432, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36289564

RESUMEN

Meat's freshness is closely related to food safety and human health and has received increasing attention nowadays. To on-site visually screen meat freshness in a fast and non-destructive manner, we rationally constructed a series of fluorescent probes (JDCN, JDNS, and JDPY) with distinct electron-withdrawing substitution groups based on julolidine-fused coumarin. These probes underwent an aza-Michael addition followed by an elimination reaction with cadaverine to generate a colorimetric and ratiometric fluorescence response, and their sensing performance was rationally enhanced by improving the electron-withdrawing strength of substitution groups. Particularly, JDCN with a dicyanovinyl group as the reaction site exhibited outstanding sensing performance including rapid response (∼60 s), high selectivity, and low detection limit (14 nM). Furthermore, JDCN was fabricated into test kits to detect cadaverine vapor with a high-contrast fluorescence change from red to green. Based on two-color visualization of cadaverine vapor, on-site non-contact and non-destructive monitoring of meat freshness was successfully achieved. The good sensing performance rendered JDCN test kits a promising real-time fluorescence screening platform for rapid, non-destructive, and accurate evaluation of meat freshness.


Asunto(s)
Colorimetría , Carne , Humanos , Cadaverina , Carne/análisis , Colorantes Fluorescentes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...