Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
3.
STAR Protoc ; 4(4): 102559, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713309

RESUMEN

Protein synthesis, or mRNA translation, is the biological process through which genetic information stored in messenger RNAs is encoded into proteins. Here, we present an optimized protocol for assessing the translation rate in mouse adult microglia and cultured bone-marrow-derived macrophages. We describe steps for isolating cells, treating them with a puromycin-analog probe, and fluorescently labeling the puromycylated-polypeptide chains. We then detail their quantification by flow cytometry or with a fluorescent plate reader. For complete details on the use and execution of this protocol, please refer to Keane et al. (2021).1.


Asunto(s)
Médula Ósea , Microglía , Animales , Ratones , Macrófagos , Colorantes , Biosíntesis de Proteínas/genética
6.
Nat Neurosci ; 26(6): 1008-1020, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37169859

RESUMEN

Molecular diversity of microglia, the resident immune cells in the CNS, is reported. Whether microglial subsets characterized by the expression of specific proteins constitute subtypes with distinct functions has not been fully elucidated. Here we describe a microglial subtype expressing the enzyme arginase-1 (ARG1; that is, ARG1+ microglia) that is found predominantly in the basal forebrain and ventral striatum during early postnatal mouse development. ARG1+ microglia are enriched in phagocytic inclusions and exhibit a distinct molecular signature, including upregulation of genes such as Apoe, Clec7a, Igf1, Lgals3 and Mgl2, compared to ARG1- microglia. Microglial-specific knockdown of Arg1 results in deficient cholinergic innervation and impaired dendritic spine maturation in the hippocampus where cholinergic neurons project, which in turn results in impaired long-term potentiation and cognitive behavioral deficiencies in female mice. Our results expand on microglia diversity and provide insights into microglia subtype-specific functions.


Asunto(s)
Arginasa , Microglía , Animales , Femenino , Ratones , Arginasa/genética , Arginasa/metabolismo , Hipocampo/metabolismo , Microglía/metabolismo
8.
Cell Death Dis ; 14(3): 192, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906641

RESUMEN

Caspases are a family of proteins mostly known for their role in the activation of the apoptotic pathway leading to cell death. In the last decade, caspases have been found to fulfill other tasks regulating the cell phenotype independently to cell death. Microglia are the immune cells of the brain responsible for the maintenance of physiological brain functions but can also be involved in disease progression when overactivated. We have previously described non-apoptotic roles of caspase-3 (CASP3) in the regulation of the inflammatory phenotype of microglial cells or pro-tumoral activation in the context of brain tumors. CASP3 can regulate protein functions by cleavage of their target and therefore could have multiple substrates. So far, identification of CASP3 substrates has been performed mostly in apoptotic conditions where CASP3 activity is highly upregulated and these approaches do not have the capacity to uncover CASP3 substrates at the physiological level. In our study, we aim at discovering novel substrates of CASP3 involved in the normal regulation of the cell. We used an unconventional approach by chemically reducing the basal level CASP3-like activity (by DEVD-fmk treatment) coupled to a Mass Spectrometry screen (PISA) to identify proteins with different soluble amounts, and consequently, non-cleaved proteins in microglia cells. PISA assay identified several proteins with significant change in their solubility after DEVD-fmk treatment, including a few already known CASP3 substrates which validated our approach. Among them, we focused on the Collectin-12 (COLEC12 or CL-P1) transmembrane receptor and uncovered a potential role for CASP3 cleavage of COLEC12 in the regulation of the phagocytic capacity of microglial cells. Taken together, these findings suggest a new way to uncover non-apoptotic substrates of CASP3 important for the modulation of microglia cell physiology.


Asunto(s)
Microglía , Proteoma , Caspasa 3/metabolismo , Microglía/metabolismo , Apoptosis/fisiología , Proteómica , Solubilidad , Caspasas/metabolismo , Colectinas
10.
Cell Death Dis ; 13(11): 953, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371383

RESUMEN

Macroautophagy/autophagy is an evolutionarily conserved and tightly regulated catabolic process involved in the maintenance of cellular homeostasis whose dysregulation is implicated in several pathological processes. Autophagy begins with the formation of phagophores that engulf cytoplasmic cargo and mature into double-membrane autophagosomes; the latter fuse with lysosomes/vacuoles for cargo degradation and recycling. Here, we report that yeast Set2, a histone lysine methyltransferase, and its mammalian homolog, SETD2, both act as positive transcriptional regulators of autophagy. However, whereas Set2 regulates the expression of several autophagy-related (Atg) genes upon nitrogen starvation, SETD2 effects in mammals were found to be more restricted. In fact, SETD2 appears to primarily regulate the differential expression of protein isoforms encoded by the ATG14 gene. SETD2 promotes the expression of a long ATG14 isoform, ATG14L, that contains an N-terminal cysteine repeats domain, essential for the efficient fusion of the autophagosome with the lysosome, that is absent in the short ATG14 isoform, ATG14S. Accordingly, SETD2 loss of function decreases autophagic flux, as well as the turnover of aggregation-prone proteins such as mutant HTT (huntingtin) leading to increased cellular toxicity. Hence, our findings bring evidence to the emerging concept that the production of autophagy-related protein isoforms can differentially affect core autophagy machinery bringing an additional level of complexity to the regulation of this biological process in more complex organisms.


Asunto(s)
Autofagosomas , Macroautofagia , Animales , Autofagosomas/metabolismo , Lisosomas/metabolismo , Autofagia/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Mamíferos
11.
Autophagy ; 18(12): 2769-2780, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35226587

RESUMEN

Macroautophagy/autophagy is a tightly regulated catabolic process, which contributes at baseline level to cellular homeostasis, and upon its stimulation to the adaptive cellular response to intra- and extracellular stress stimuli. Decrease of autophagy activity is occurring upon aging and thought to contribute to age-related-diseases. Recently, we uncovered, upon autophagy induction, the role of de novo DNMT3A (DNA methyltransferase 3 alpha)-mediated DNA methylation on expression of the MAP1LC3 (microtubule associated protein 1 light chain 3) proteins, core components of the autophagy pathway, which resulted in reduced baseline autophagy activity. Here, we report that serine/threonine kinase ULK3 (unc-51 like kinase 3)-dependent activation of GLI1 (GLI family zinc finger 1) contributes to the transcriptional upregulation of DNMT3A gene expression upon autophagy induction, thereby bringing additional understanding of the long-term effect of autophagy induction and a possible mechanism for its decline upon aging, pathological conditions, or in response to treatment interventions.Abbreviations: CBZ: carbamazepine; ChIP: chromatin immunoprecipitation; Clon: clonidine; DNMT3A: DNA methyltransferase 3 alpha; GLI1: GLI family zinc finger 1; GLI2: GLI family zinc finger 2; MAP1LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PLA: proximity ligation assay; RT-qPCR: quantitative reverse transcription PCR; shRNA: small hairpin RNA; siRNA: small interfering RNA; Treh: trehalose; ULK3: unc-51 like kinase 3.


Asunto(s)
Autofagia , Transducción de Señal , Autofagia/genética , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/farmacología , Proteínas Serina-Treonina Quinasas , ARN Interferente Pequeño/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
13.
Neurooncol Adv ; 3(1): vdab096, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485907

RESUMEN

BACKGROUND: Diffuse intrinsic pontine gliomas (DIPG), within diffuse midline gliomas are aggressive pediatric brain tumors characterized by histone H3-K27M mutation. Small-molecule inhibitors for the EZH2-H3K27 histone methyltransferase have shown promise in preclinical animal models of DIPG, despite having little effect on DIPG cells in vitro. Therefore, we hypothesized that the effect of EZH2 inhibition could be mediated through targeting of this histone modifying enzyme in tumor-associated microglia. METHODS: Primary DIPG tissues, and cocultures between microglia and patient-derived DIPG or -pediatric high-grade glioma (pHGG) cell lines, were used to establish the H3-K27M status of each cell type. Antisense RNA strategies were used to target EZH2 gene expression in both microglia and glioma cells. Microglia anti-tumoral properties were assessed by gene expression profile, tumor cell invasion capacity, microglial phagocytic activity, and associated tumor cell death. RESULTS: In primary DIPG tissues, microglia do not carry the H3-K27M mutation, otherwise characteristic of the cancer cells. Activation of a microglial tumor-supportive phenotype by pHGG, independently of their H3-K27M status, is associated with a transient H3K27me3 downregulation. Repression of EZH2 in DIPG cells has no impact on tumor cell survival or their ability to activate microglia. However, repression of EZH2 in microglia induces an anti-tumor phenotype resulting in decreased cancer cell invasion capability, increased microglial phagocytosis, and tumor-related cell death. CONCLUSIONS: These results indicate that microglia, beyond the tumor cells, contribute to the observed response of DIPG to EZH2 inhibition. Results highlight the potential importance of microglia as a new therapeutic avenue in DIPG.

14.
Mol Brain ; 14(1): 87, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34082793

RESUMEN

Microglia, resident immunocompetent cells of the central nervous system, can display a range of reaction states and thereby exhibit distinct biological functions across development, adulthood and under disease conditions. Distinct gene expression profiles are reported to define each of these microglial reaction states. Hence, the identification of modulators of selective microglial transcriptomic signature, which have the potential to regulate unique microglial function has gained interest. Here, we report the identification of ATG7 (Autophagy-related 7) as a selective modulator of an NF-κB-dependent transcriptional program controlling the pro-inflammatory response of microglia. We also uncover that microglial Atg7-deficiency was associated with reduced microglia-mediated neurotoxicity, and thus a loss of biological function associated with the pro-inflammatory microglial reactive state. Further, we show that Atg7-deficiency in microglia did not impact on their ability to respond to alternative stimulus, such as one driving them towards an anti-inflammatory/tumor supportive phenotype. The identification of distinct regulators, such as Atg7, controlling specific microglial transcriptional programs could lead to developing novel therapeutic strategies aiming to manipulate selected microglial phenotypes, instead of the whole microglial population with is associated with several pitfalls.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/deficiencia , Inflamación/genética , Inflamación/patología , Microglía/patología , Neuronas/patología , Transcriptoma/genética , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Redes Reguladoras de Genes , Inmunidad/efectos de los fármacos , Inmunidad/genética , Interleucina-4/metabolismo , Lipopolisacáridos/farmacología , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , FN-kappa B/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neurotoxinas/toxicidad , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo , Transcriptoma/efectos de los fármacos
15.
Nat Rev Neurol ; 17(4): 243-259, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33692572

RESUMEN

Microglia are the resident innate immune cells of the immune-privileged CNS and, as such, represent the first line of defence against tissue injury and infection. Given their location, microglia are undoubtedly the first immune cells to encounter a developing primary brain tumour. Our knowledge of these cells is therefore important to consider in the context of such neoplasms. As the heterogeneous nature of the most aggressive primary brain tumours is thought to underlie their poor prognosis, this Review places a special emphasis on the heterogeneity of the tumour-associated microglia and macrophage populations present in primary brain tumours. Where available, specific information on microglial heterogeneity in various types and subtypes of brain tumour is included. Emerging evidence that highlights the importance of considering the heterogeneity of both the tumour and of microglial populations in providing improved treatment outcomes for patients is also discussed.


Asunto(s)
Neoplasias Encefálicas , Microglía , Animales , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Humanos , Microglía/clasificación , Microglía/inmunología , Microglía/metabolismo
16.
Autophagy ; 17(5): 1259-1277, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32876528

RESUMEN

Macroautophagy/autophagy is a conserved catabolic pathway that targets cytoplasmic components for their degradation and recycling in an autophagosome-dependent lysosomal manner. Under physiological conditions, this process maintains cellular homeostasis. However, autophagy can be stimulated upon different forms of cellular stress, ranging from nutrient starvation to exposure to drugs. Thus, this pathway can be seen as a central component of the integrated and adaptive stress response. Here, we report that even brief induction of autophagy is coupled in vitro to a persistent downregulation of the expression of MAP1LC3 isoforms, which are key components of the autophagy core machinery. In fact, DNA-methylation mediated by de novo DNA methyltransferase DNMT3A of MAP1LC3 loci upon autophagy stimulation leads to the observed long-term decrease of MAP1LC3 isoforms at transcriptional level. Finally, we report that the downregulation of MAP1LC3 expression can be observed in vivo in zebrafish larvae and mice exposed to a transient autophagy stimulus. This epigenetic memory of autophagy provides some understanding of the long-term effect of autophagy induction and offers a possible mechanism for its decline upon aging, pathological conditions, or in response to treatment interventions.Abbreviations: ACTB: actin beta; ATG: autophagy-related; 5-Aza: 5-aza-2'-deoxycytidine; BafA1: bafilomycin A1; CBZ: carbamazepine; CDKN2A: cyclin dependent kinase inhibitor 2A; ChIP: chromatin immunoprecipitation; Clon.: clonidine; CpG: cytosine-guanine dinucleotide: DMSO: dimethyl sulfoxide; DNA: deoxyribonucleic acid; DNMT: DNA methyltransferase; DNMT1: DNA methyltransferase 1; DNMT3A: DNA methyltransferase alpha; DNMT3B: DNA methyltransferase beta; dpf: days post-fertilization; EBSS: Earle's balanced salt solution; EM: Zebrafish embryo medium; GABARAP: GABA type A receptor associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GRO-Seq: Global Run-On sequencing; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAP1LC3A: microtubule-associated protein 1 light chain 3 alpha; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MAP1LC3B2: microtubule-associated protein 1 light chain 3 beta 2; MEM: minimum essential medium; MEF: mouse embryonic fibroblasts; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; PBS: phosphate-buffered saline; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RT-qPCR: quantitative reverse transcription polymerase chain reaction; SQSTM1/p62: sequestosome 1; Starv.: starvation; Treh.: trehalose; ULK1: unc-51 like autophagy activating kinase 1.


Asunto(s)
Autofagia/fisiología , ADN Metiltransferasa 3A/metabolismo , ADN/metabolismo , Memoria a Largo Plazo/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Fibroblastos/metabolismo , Humanos , Lisosomas/metabolismo , Metiltransferasas/metabolismo , Ratones , Pez Cebra/genética
17.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33108356

RESUMEN

Microglia maintain homeostasis in the brain. However, with age, they become primed and respond more strongly to inflammatory stimuli. We show here that microglia from aged mice had upregulated mTOR complex 1 signaling controlling translation, as well as protein levels of inflammatory mediators. Genetic ablation of mTOR signaling showed a dual yet contrasting effect on microglia priming: it caused an NF-κB-dependent upregulation of priming genes at the mRNA level; however, mice displayed reduced cytokine protein levels, diminished microglia activation, and milder sickness behavior. The effect on translation was dependent on reduced phosphorylation of 4EBP1, resulting in decreased binding of eIF4E to eIF4G. Similar changes were present in aged human microglia and in damage-associated microglia, indicating that upregulation of mTOR-dependent translation is an essential aspect of microglia priming in aging and neurodegeneration.


Asunto(s)
Envejecimiento/metabolismo , Microglía/enzimología , Biosíntesis de Proteínas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Envejecimiento/genética , Animales , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Humanos , Ratones , Ratones Transgénicos , FN-kappa B/genética , FN-kappa B/metabolismo , Fosforilación/genética , Serina-Treonina Quinasas TOR/genética
18.
J Neurosci Res ; 98(2): 284-298, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30942936

RESUMEN

Microglia are the innate immune cells of the brain, which maintain homeostasis by constantly scanning and surveying the environment with their highly ramified processes. In order to exert this function, they need to phagocytose synapses as well as debris and dead cells, a process that is further amplified in pathological conditions. Importantly, it has been shown that microglia phagocytic capacity is altered in the course of neurodegenerative disease, for which aging is one of the highest risk factors. Thus, understanding how phagocytosis is impaired during aging is a priority for future research. Advances in this area are expected to significantly contribute to our understanding of normal cognition during aging, as well as changes that take place in age-associated neurodegenerative diseases. In this review, we will summarize the current knowledge on how phagocytosis is executed and affected by aging or in age-associated neurological disorders, such as Alzheimer's disease (AD). Furthermore, we will summarize both protective and deleterious consequences of altered phagocytosis in AD and where relevant in other neurodegenerative diseases.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Microglía/metabolismo , Fagocitosis/fisiología , Envejecimiento/patología , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Humanos , Microglía/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...