Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biotechnol ; 118(3): 316-27, 2005 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-16019100

RESUMEN

Monitoring cell growth is crucial to the success of an animal cell culture process that can be accomplished by a variety of direct or indirect methodologies. Glucose is a major carbon and energy source for cultured mammalian cells in most cases, but glycolytic metabolism often results in the accumulation of lactate. Glucose and lactate levels are therefore routinely measured to determine metabolic activities of a culture. Typically, neither glucose consumption rate nor lactate accumulation rate has a direct correlation with cell density due to the changes in culture environment and cell physiology. We discovered that although the metabolic rate of glucose or lactate varies depending on the stages of a culture, the cumulative consumption of glucose and lactate combined (Q(GL)) exhibits a linear relationship relative to the integral of viable cells (IVC), with the slope indicating the specific consumption rate of glucose and lactate combined (q(GL)). Additional studies also showed that the q(GL) remains relatively constant under different culture conditions. The insensitivity of the q(GL) to process variations allows a potentially easy and accurate determination of viable cell density by the measurement of glucose and lactate. In addition, the more predictable nature of a linear relationship will aid the design of better forward control strategies to improve cell culture processes.


Asunto(s)
Reactores Biológicos , Células CHO/fisiología , Técnicas de Cultivo de Célula/métodos , Glucosa/metabolismo , Ácido Láctico/metabolismo , Monitoreo Fisiológico/métodos , Animales , Proliferación Celular , Cricetinae , Cricetulus , Concentración de Iones de Hidrógeno , Tasa de Depuración Metabólica , Temperatura
3.
Trends Biochem Sci ; 25(10): 489-95, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11050434

RESUMEN

Receptor-activated phosphoinositide (PI) 3-kinases produce PtdIns(3, 4,5)P(3) and its metabolite PtdIns(3,4)P(2) that function as second messengers in membrane recruitment and activation of target proteins. The cytohesin and centaurin protein families are potential targets for PtdIns(3,4,5)P(3) that also regulate and interact with Arf GTPases. Consequently, these families are poised to transduce PI 3-kinase activation into coordinated control of Arf-dependent pathways. Proposed downstream events in PI 3-kinase-regulated Arf cascades include modulation of vesicular trafficking and the actin cytoskeleton.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Factores de Intercambio de Guanina Nucleótido , Humanos , Datos de Secuencia Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal
4.
J Biol Chem ; 275(44): 34293-305, 2000 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-10887188

RESUMEN

The Saccharomyces cerevisiae SAC1 gene was identified via independent analyses of mutations that modulate yeast actin function and alleviate the essential requirement for phosphatidylinositol transfer protein (Sec14p) activity in Golgi secretory function. The SAC1 gene product (Sac1p) is an integral membrane protein of the endoplasmic reticulum and the Golgi complex. Sac1p shares primary sequence homology with a subfamily of cytosolic/peripheral membrane phosphoinositide phosphatases, the synaptojanins, and these Sac1 domains define novel phosphoinositide phosphatase modules. We now report the characterization of a rat counterpart of Sac1p. Rat Sac1 is a ubiquitously expressed 65-kDa integral membrane protein of the endoplasmic reticulum that is found at particularly high levels in cerebellar Purkinje cells. Like Sac1p, rat Sac1 exhibits intrinsic phosphoinositide phosphatase activity directed toward phosphatidylinositol 3-phosphate, phosphatidylinositol 4-phosphate, and phosphatidylinositol 3,5-bisphosphate substrates, and we identify mutant rat sac1 alleles that evoke substrate-specific defects in this enzymatic activity. Finally, rat Sac1 expression in Deltasac1 yeast strains complements a wide phenotypes associated with Sac1p insufficiency. Biochemical and in vivo data indicate that rat Sac1 phosphatidylinositol-4-phosphate phosphatase activity, but not its phosphatidylinositol-3-phosphate or phosphatidylinositol-3, 5-bisphosphate phosphatase activities, is essential for the heterologous complementation of Sac1p defects in vivo. Thus, yeast Sac1p and rat Sac1 are integral membrane lipid phosphatases that play evolutionary conserved roles in eukaryotic cell physiology.


Asunto(s)
Proteínas de la Membrana/fisiología , Mutación , Monoéster Fosfórico Hidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células CHO , Cricetinae , Cartilla de ADN , Retículo Endoplásmico/metabolismo , Fosfatos de Inositol/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Ratas , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
5.
Mol Biol Cell ; 10(7): 2235-50, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10397762

RESUMEN

SacIp dysfunction results in bypass of the requirement for phosphatidylinositol transfer protein (Sec14p) function in yeast Golgi processes. This effect is accompanied by alterations in inositol phospholipid metabolism and inositol auxotrophy. Elucidation of how sac1 mutants effect "bypass Sec14p" will provide insights into Sec14p function in vivo. We now report that, in addition to a dramatic accumulation of phosphatidylinositol-4-phosphate, sac1 mutants also exhibit a specific acceleration of phosphatidylcholine biosynthesis via the CDP-choline pathway. This phosphatidylcholine metabolic phenotype is sensitive to the two physiological challenges that abolish bypass Sec14p in sac1 strains; i.e. phospholipase D inactivation and expression of bacterial diacylglycerol (DAG) kinase. Moreover, we demonstrate that accumulation of phosphatidylinositol-4-phosphate in sac1 mutants is insufficient to effect bypass Sec14p. These data support a model in which phospholipase D activity contributes to generation of DAG that, in turn, effects bypass Sec14p. A significant fate for this DAG is consumption by the CDP-choline pathway. Finally, we determine that CDP-choline pathway activity contributes to the inositol auxotrophy of sac1 strains in a novel manner that does not involve obvious defects in transcriptional expression of the INO1 gene.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Portadoras/metabolismo , Inositol/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana , Proteínas de Transporte de Membrana , Proteínas de Saccharomyces cerevisiae , Levaduras/metabolismo , Proteínas Bacterianas/metabolismo , Colina/metabolismo , Citidina Difosfato/metabolismo , Diacilglicerol Quinasa/metabolismo , Diglicéridos/metabolismo , Mutación , Fosfatidilcolinas/biosíntesis , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipasa D/metabolismo , Proteínas de Transferencia de Fosfolípidos , Levaduras/genética
6.
EMBO J ; 18(6): 1506-15, 1999 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-10075922

RESUMEN

Analysis of microsomal ATP transport in yeast resulted in the identification of Sac1p as an important factor in efficient ATP uptake into the endoplasmic reticulum (ER) lumen. Yet it remained unclear whether Sac1p is the authentic transporter in this reaction. Sac1p shows no homology to other known solute transporters but displays similarity to the N-terminal non-catalytic domain of a subset of inositol 5'-phosphatases. Furthermore, Sac1p was demonstrated to be involved in inositol phospholipid metabolism, an activity whose absence contributes to the bypass Sec14p phenotype in sac1 mutants. We now show that purified recombinant Sac1p can complement ATP transport defects when reconstituted together with sac1Delta microsomal extracts, but is unable to catalyze ATP transport itself. In addition, we demonstrate that sac1Delta strains are defective in ER protein translocation and folding, which is a direct consequence of impaired ATP transport function and not related to the role of Sac1p in Golgi inositol phospholipid metabolism. These data suggest that Sac1p is an important regulator of microsomal ATP transport providing a possible link between inositol phospholipid signaling and ATP-dependent processes in the yeast ER.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Fúngicas/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Microsomas/metabolismo , Fosfolípidos/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Cinética , Liposomas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas , Proteolípidos/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
7.
Trends Cell Biol ; 8(7): 276-82, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9714599

RESUMEN

Phosphatidylinositol transfer proteins (PITPs) have historically been thought to help execute lipid-sorting events by transporting phospholipid monomers between membrane bilayers. Recent data, however, indicate unanticipated roles for PITPs in the coordination and/or coupling of phospholipid metabolism with vesicle trafficking and the downregulation of signal-transduction reactions. We are only now beginning to appreciate both the identities of PITP-dependent cellular reactions and the intriguing mechanisms by which PITPs execute their functions in eukaryotic cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana , Fosfatidilinositoles/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Transporte Biológico/fisiología , Proteínas Portadoras/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas de Transferencia de Fosfolípidos , Saccharomyces cerevisiae/citología
8.
Nature ; 387(6628): 101-5, 1997 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-9139830

RESUMEN

Yeast phosphatidylinositol transfer protein (Sec14p) is required for the production of secretory vesicles from the Golgi. This requirement can be relieved by inactivation of the cytosine 5'-diphosphate (CDP)-choline pathway for phosphatidylcholine biosynthesis, indicating that Sec14p is an essential component of a regulatory pathway linking phospholipid metabolism with vesicle trafficking (the Sec14p pathway). Sac1p (refs 7 and 8) is an integral membrane protein related to inositol-5-phosphatases such as synaptojanin, a protein found in rat brain. Here we show that defects in Sac1p also relieve the requirement for Sec14p by altering phospholipid metabolism so as to expand the pool of diacylglycerol (DAG) in the Golgi. Moreover, although short-chain DAG improves secretory function in strains with a temperature-sensitive Sec14p, expression of diacylglycerol kinase from Escherichia coli further impairs it. The essential function of Sec14p may therefore be to maintain a sufficient pool of DAG in the Golgi to support the production of secretory vesicles.


Asunto(s)
Proteínas Portadoras/metabolismo , Diglicéridos/metabolismo , Proteínas Fúngicas/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Clonación Molecular , Diacilglicerol Quinasa , Escherichia coli , Proteínas Fúngicas/genética , Glicósido Hidrolasas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/genética , Mutagénesis , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos , Monoéster Fosfórico Hidrolasas , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingolípidos/metabolismo , beta-Fructofuranosidasa
9.
EMBO J ; 15(23): 6447-59, 1996 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-8978672

RESUMEN

The yeast phosphatidylinositol transfer protein (Sec14p) is required for biogenesis of Golgi-derived transport vesicles and cell viability, and this essential Sec14p requirement is abrogated by inactivation of the CDP-choline pathway for phosphatidylcholine biosynthesis. These findings indicate that Sec14p functions to alleviate a CDP-choline pathway-mediated toxicity to yeast Golgi secretory function. We now report that this toxicity is manifested through the action of yeast Kes1p, a polypeptide that shares homology with the ligand-binding domain of human oxysterol binding protein (OSBP). Identification of Kes1p as a negative effector for Golgi function provides the first direct insight into the biological role of any member of the OSBP family, and describes a novel pathway for the regulation of Golgi-derived transport vesicle biogenesis.


Asunto(s)
Proteínas Fúngicas/metabolismo , Aparato de Golgi/fisiología , Proteínas de la Membrana , Receptores de Esteroides/química , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/ultraestructura , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Proteínas Portadoras/metabolismo , Citidina Difosfato Colina/metabolismo , Cartilla de ADN , Proteínas Fúngicas/química , Aparato de Golgi/ultraestructura , Humanos , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
10.
Genetics ; 143(2): 685-97, 1996 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8725219

RESUMEN

The BSD2-1 allele renders Saccharomyces cerevisiae independent of its normally essential requirement for phosphatidylinositol transfer protein (Sec14p) in the stimulation of Golgi secretory function and cell viability. We now report that BSD2-1 yeast mutants also exhibit yet another phenotype, an inositol auxotrophy. We demonstrate that the basis for this Ino- phenotype is the inability of BSD2-1 strains to derepress transcription of INO1, the structural gene for the enzyme that catalyzes the committed step in de novo inositol biosynthesis in yeast. This constitutive repression of INO1 expression is mediated through specific inactivation of Ino2p, a factor required for trans-activation of INO1 transcription, and we show that these transcriptional regulatory defects can be uncoupled from the "bypass Sec14p" phenotype of BSD2-1 strains. Finally, we present evidence that newly synthesized phosphatidylinositol is subject to accelerated turnover in BSD2-1 mutants and that prevention of this accelerated phosphatidyl-inositol turnover in turn negates suppression of Sec14p defects by BSD2-1. We propose that, in BSD2-1 strains, a product(s) generated by phosphatidylinositol turnover coordinately modulates the activities of both the Sec14p/Golgi pathway and the pathway through which transcription of phospholipid biosynthetic genes is derepressed.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Proteínas de la Membrana , Fosfatidilinositoles/metabolismo , Fosfolípidos/biosíntesis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas Portadoras/metabolismo , Mutación , Fosfatidilinositoles/genética , Proteínas de Transferencia de Fosfolípidos , Fosfolípidos/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...