Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303207

RESUMEN

Since its inception nearly a half century ago, CHARMM has been playing a central role in computational biochemistry and biophysics. Commensurate with the developments in experimental research and advances in computer hardware, the range of methods and applicability of CHARMM have also grown. This review summarizes major developments that occurred after 2009 when the last review of CHARMM was published. They include the following: new faster simulation engines, accessible user interfaces for convenient workflows, and a vast array of simulation and analysis methods that encompass quantum mechanical, atomistic, and coarse-grained levels, as well as extensive coverage of force fields. In addition to providing the current snapshot of the CHARMM development, this review may serve as a starting point for exploring relevant theories and computational methods for tackling contemporary and emerging problems in biomolecular systems. CHARMM is freely available for academic and nonprofit research at https://academiccharmm.org/program.

2.
J Chem Inf Model ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39327869

RESUMEN

Mucins, the biomolecular components of mucus, are glycoproteins that form a thick physical barrier at all tissue-air interfaces, forming a first line of defense against pathogens. Structural features of mucins and their interactions with other biomolecules remain largely unexplored due to the challenges associated with their high-resolution characterization. Combining limited mass spectrometry glycomics and protein sequencing data, we present all-atom, explicitly solvated molecular dynamics simulations of a major respiratory mucin, MUC5B. We detail key forces and degrees of freedom imposed by the extensive O-glycosylation, which imbue the canonically observed bottlebrush-like structures to these otherwise intrinsically disordered protein backbones. We compare our simulation results to static structures observed in recent scanning tunneling microscopy experiments as well as other published experimental efforts. Our work represents the demonstration of a workflow applied to a mucin example, which we hope will be employed by other groups to investigate the dynamics and interactions of other mucins, which can inform on structural details currently inaccessible to experimental techniques.

3.
Nat Commun ; 15(1): 7370, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191724

RESUMEN

The full-length prefusion-stabilized SARS-CoV-2 spike (S) is the principal antigen of COVID-19 vaccines. Vaccine efficacy has been impacted by emerging variants of concern that accumulate most of the sequence modifications in the immunodominant S1 subunit. S2, in contrast, is the most evolutionarily conserved region of the spike and can elicit broadly neutralizing and protective antibodies. Yet, S2's usage as an alternative vaccine strategy is hampered by its general instability. Here, we use a simulation-driven approach to design S2-only immunogens stabilized in a closed prefusion conformation. Molecular simulations provide a mechanistic characterization of the S2 trimer's opening, informing the design of tryptophan substitutions that impart kinetic and thermodynamic stabilization. Structural characterization via cryo-EM shows the molecular basis of S2 stabilization in the closed prefusion conformation. Informed by molecular simulations and corroborated by experiments, we report an engineered S2 immunogen that exhibits increased protein expression, superior thermostability, and preserved immunogenicity against sarbecoviruses.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Simulación de Dinámica Molecular , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Humanos , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Microscopía por Crioelectrón , Estabilidad Proteica , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Animales
4.
bioRxiv ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38979151

RESUMEN

Understanding the zoonotic risks posed by bat coronaviruses (CoVs) is critical for pandemic preparedness. Herein, we generated recombinant vesicular stomatitis viruses (rVSVs) bearing spikes from divergent bat CoVs to investigate their cell entry mechanisms. Unexpectedly, the successful recovery of rVSVs bearing the spike from SHC014, a SARS-like bat CoV, was associated with the acquisition of a novel substitution in the S2 fusion peptide-proximal region (FPPR). This substitution enhanced viral entry in both VSV and coronavirus contexts by increasing the availability of the spike receptor-binding domain to recognize its cellular receptor, ACE2. A second substitution in the spike N-terminal domain, uncovered through forward-genetic selection, interacted epistatically with the FPPR substitution to synergistically enhance spike:ACE2 interaction and viral entry. Our findings identify genetic pathways for adaptation by bat CoVs during spillover and host-to-host transmission, fitness trade-offs inherent to these pathways, and potential Achilles' heels that could be targeted with countermeasures.

5.
J Chem Inf Model ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843070

RESUMEN

Determining the viability of a new drug molecule is a time- and resource-intensive task that makes computer-aided assessments a vital approach to rapid drug discovery. Here we develop a machine learning algorithm, iMiner, that generates novel inhibitor molecules for target proteins by combining deep reinforcement learning with real-time 3D molecular docking using AutoDock Vina, thereby simultaneously creating chemical novelty while constraining molecules for shape and molecular compatibility with target active sites. Moreover, through the use of various types of reward functions, we have introduced novelty in generative tasks for new molecules such as chemical similarity to a target ligand, molecules grown from known protein bound fragments, and creation of molecules that enforce interactions with target residues in the protein active site. The iMiner algorithm is embedded in a composite workflow that filters out Pan-assay interference compounds, Lipinski rule violations, uncommon structures in medicinal chemistry, and poor synthetic accessibility with options for cross-validation against other docking scoring functions and automation of a molecular dynamics simulation to measure pose stability. We also allow users to define a set of rules for the structures they would like to exclude during the training process and postfiltering steps. Because our approach relies only on the structure of the target protein, iMiner can be easily adapted for the future development of other inhibitors or small molecule therapeutics of any target protein.

6.
Nat Commun ; 14(1): 6169, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794035

RESUMEN

Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of biological functions. In particular, the T cell immunoglobulin and mucin-domain containing family of proteins (TIM-1, -3, -4) decorate immune cells and act as key regulators in cellular immunity. However, their dense O-glycosylation remains enigmatic, primarily due to the challenges associated with studying mucin domains. Here, we demonstrate that the mucinase SmE has a unique ability to cleave at residues bearing very complex glycans. SmE enables improved mass spectrometric analysis of several mucins, including the entire TIM family. With this information in-hand, we perform molecular dynamics (MD) simulations of TIM-3 and -4 to understand how glycosylation affects structural features of these proteins. Finally, we use these models to investigate the functional relevance of glycosylation for TIM-3 function and ligand binding. Overall, we present a powerful workflow to better understand the detailed molecular structures and functions of the mucinome.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A , Mucinas , Mucinas/metabolismo , Polisacárido Liasas , Polisacáridos/química
7.
Cell Rep Phys Sci ; 4(4): 101346, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37077408

RESUMEN

Viral variants of concern continue to arise for SARS-CoV-2, potentially impacting both methods for detection and mechanisms of action. Here, we investigate the effect of an evolving spike positive charge in SARS-CoV-2 variants and subsequent interactions with heparan sulfate and the angiotensin converting enzyme 2 (ACE2) in the glycocalyx. We show that the positively charged Omicron variant evolved enhanced binding rates to the negatively charged glycocalyx. Moreover, we discover that while the Omicron spike-ACE2 affinity is comparable to that of the Delta variant, the Omicron spike interactions with heparan sulfate are significantly enhanced, giving rise to a ternary complex of spike-heparan sulfate-ACE2 with a large proportion of double-bound and triple-bound ACE2. Our findings suggest that SARS-CoV-2 variants evolve to be more dependent on heparan sulfate in viral attachment and infection. This discovery enables us to engineer a second-generation lateral-flow test strip that harnesses both heparin and ACE2 to reliably detect all variants of concern, including Omicron.

8.
Sci Adv ; 9(13): eade8778, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36989354

RESUMEN

Vaccines and drugs have helped reduce disease severity and blunt the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, ongoing virus transmission, continuous evolution, and increasing selective pressures have the potential to yield viral variants capable of resisting these interventions. Here, we investigate the susceptibility of natural variants of the main protease [Mpro; 3C-like protease (3CLpro)] of SARS-CoV-2 to protease inhibitors. Multiple single amino acid changes in Mpro confer resistance to nirmatrelvir (the active component of Paxlovid). An additional clinical-stage inhibitor, ensitrelvir (Xocova), shows a different resistance mutation profile. Importantly, phylogenetic analyses indicate that several of these resistant variants have pre-existed the introduction of these drugs into the human population and are capable of spreading. These results encourage the monitoring of resistance variants and the development of additional protease inhibitors and other antiviral drugs with different mechanisms of action and resistance profiles for combinatorial therapy.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Inhibidores de Proteasas/química , Filogenia , Péptido Hidrolasas
9.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778266

RESUMEN

Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of biological functions. In particular, the T cell immunoglobulin and mucin-domain containing family of proteins (TIM-1, -3, -4) decorate immune cells and act as key checkpoint inhibitors in cancer. However, their dense O-glycosylation remains enigmatic both in terms of glycoproteomic landscape and structural dynamics, primarily due to the challenges associated with studying mucin domains. Here, we present a mucinase (SmE) and demonstrate its ability to selectively cleave along the mucin glycoprotein backbone, similar to others of its kind. Unlike other mucinases, though, SmE harbors the unique ability to cleave at residues bearing extremely complex glycans which enabled improved mass spectrometric analysis of several mucins, including the entire TIM family. With this information in-hand, we performed molecular dynamics (MD) simulations of TIM-3 and -4 to demonstrate how glycosylation affects structural features of these proteins. Overall, we present a powerful workflow to better understand the detailed molecular structures of the mucinome.

10.
Int J High Perform Comput Appl ; 37(1): 28-44, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36647365

RESUMEN

We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus obscure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized.

11.
Nat Chem Biol ; 19(3): 275-283, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36175661

RESUMEN

Prevention of infection and propagation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a high priority in the Coronavirus Disease 2019 (COVID-19) pandemic. Here we describe S-nitrosylation of multiple proteins involved in SARS-CoV-2 infection, including angiotensin-converting enzyme 2 (ACE2), the receptor for viral entry. This reaction prevents binding of ACE2 to the SARS-CoV-2 spike protein, thereby inhibiting viral entry, infectivity and cytotoxicity. Aminoadamantane compounds also inhibit coronavirus ion channels formed by envelope (E) protein. Accordingly, we developed dual-mechanism aminoadamantane nitrate compounds that inhibit viral entry and, thus, the spread of infection by S-nitrosylating ACE2 via targeted delivery of the drug after E protein channel blockade. These non-toxic compounds are active in vitro and in vivo in the Syrian hamster COVID-19 model and, thus, provide a novel avenue to pursue therapy.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Unión Proteica , Peptidil-Dipeptidasa A/metabolismo
12.
Curr Opin Struct Biol ; 76: 102439, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35926454

RESUMEN

Recent biochemical, biophysical, and genetic studies have shown that heparan sulfate, a major component of the cellular glycocalyx, participates in infection of SARS-CoV-2 by facilitating the so-called open conformation of the spike protein, which is required for binding to ACE2. This review highlights the involvement of heparan sulfate in the SARS-CoV-2 infection cycle and argues that there is a high degree of coordination between host cell heparan sulfate and asparagine-linked glycans on the spike in enabling ACE2 binding and subsequent infection. The discovery that spike protein binding and infection depends on both viral and host glycans provides insights into the evolution, spread and potential therapies for SARS-CoV-2 and its variants.


Asunto(s)
COVID-19 , Enzima Convertidora de Angiotensina 2 , Asparagina/metabolismo , Sitios de Unión , Heparitina Sulfato , Humanos , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
13.
bioRxiv ; 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35982678

RESUMEN

Vaccines and drugs have helped reduce disease severity and blunt the spread of SARS-CoV-2. However, ongoing virus transmission, continuous evolution, and increasing selective pressures have the potential to yield viral variants capable of resisting these interventions. Here, we investigate the susceptibility of natural variants of the main protease (Mpro/3CLpro) of SARS-CoV-2 to protease inhibitors. Multiple single amino acid changes in Mpro confer resistance to nirmatrelvir (the active component of Paxlovid). An additional clinical-stage inhibitor, ensitrelvir (Xocova), shows a different resistance mutation profile. Importantly, phylogenetic analyses indicate that several of these resistant variants have pre-existed the introduction of these drugs into the human population and are capable of spreading. These results encourage the monitoring of resistance variants and the development of additional protease inhibitors and other antiviral drugs with different mechanisms of action and resistance profiles for combinatorial therapy.

14.
J Nat Prod ; 85(5): 1315-1323, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35549259

RESUMEN

Cold water benthic environments are a prolific source of structurally diverse molecules with a range of bioactivities against human disease. Specimens of a previously chemically unexplored soft coral, Duva florida, were collected during a deep-sea cruise that sampled marine invertebrates along the Irish continental margin in 2018. Tuaimenal A (1), a cyclized merosesquiterpenoid representing a new carbon scaffold with a highly substituted chromene core, was discovered through exploration of the soft coral secondary metabolome via NMR-guided fractionation. The absolute configuration was determined through vibrational circular dichroism. Functional biochemical assays and in silico docking experiments found tuaimenal A selectively inhibits the viral main protease (3CLpro) of SARS-CoV-2.


Asunto(s)
Antozoos , COVID-19 , Animales , Antivirales/química , Antivirales/farmacología , Florida , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , SARS-CoV-2
15.
J Phys Chem B ; 126(15): 2798-2811, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35404610

RESUMEN

A key step during indirect alchemical free energy simulations using quantum mechanical/molecular mechanical (QM/MM) hybrid potential energy functions is the calculation of the free energy difference ΔAlow→high between the low level (e.g., pure MM) and the high level of theory (QM/MM). A reliable approach uses nonequilibrium work (NEW) switching simulations in combination with Jarzynski's equation; however, it is computationally expensive. In this study, we investigate whether it is more efficient to use more shorter switches or fewer but longer switches. We compare results obtained with various protocols to reference free energy differences calculated with Crooks' equation. The central finding is that fewer longer switches give better converged results. As few as 200 sufficiently long switches lead to ΔAlow→high values in good agreement with the reference results. This optimized protocol reduces the computational cost by a factor of 40 compared to earlier work. We also describe two tools/ways of analyzing the raw data to detect sources of poor convergence. Specifically, we find it helpful to analyze the raw data (work values from the NEW switching simulations) in a quasi-time series-like manner. Principal component analysis helps to detect cases where one or more conformational degrees of freedom are different at the low and high level of theory.


Asunto(s)
Teoría Cuántica , Entropía , Conformación Molecular , Termodinámica
16.
bioRxiv ; 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35411336

RESUMEN

Prevention of infection and propagation of SARS-CoV-2 is of high priority in the COVID-19 pandemic. Here, we describe S-nitrosylation of multiple proteins involved in SARS-CoV-2 infection, including angiotensin converting enzyme 2 (ACE2), the receptor for viral entry. This reaction prevents binding of ACE2 to the SARS-CoV-2 Spike protein, thereby inhibiting viral entry, infectivity, and cytotoxicity. Aminoadamantane compounds also inhibit coronavirus ion channels formed by envelope (E) protein. Accordingly, we developed dual-mechanism aminoadamantane nitrate compounds that inhibit viral entry and thus spread of infection by S-nitrosylating ACE2 via targeted delivery of the drug after E-protein channel blockade. These non-toxic compounds are active in vitro and in vivo in the Syrian hamster COVID-19 model, and thus provide a novel avenue for therapy.

17.
ACS Cent Sci ; 8(1): 22-42, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35106370

RESUMEN

Inspired by the role of cell-surface glycoproteins as coreceptors for pathogens, we report the development of GlycoGrip: a glycopolymer-based lateral flow assay for detecting SARS-CoV-2 and its variants. GlycoGrip utilizes glycopolymers for primary capture and antispike antibodies labeled with gold nanoparticles for signal-generating detection. A lock-step integration between experiment and computation has enabled efficient optimization of GlycoGrip test strips which can selectively, sensitively, and rapidly detect SARS-CoV-2 and its variants in biofluids. Employing the power of the glycocalyx in a diagnostic assay has distinct advantages over conventional immunoassays as glycopolymers can bind to antigens in a multivalent capacity and are highly adaptable for mutated strains. As new variants of SARS-CoV-2 are identified, GlycoGrip will serve as a highly reconfigurable biosensor for their detection. Additionally, via extensive ensemble-based docking simulations which incorporate protein and glycan motion, we have elucidated important clues as to how heparan sulfate and other glycocalyx components may bind the spike glycoprotein during SARS-CoV-2 host-cell infection. GlycoGrip is a promising and generalizable alternative to costly, labor-intensive RT-PCR, and we envision it will be broadly useful, including for rural or low-income populations that are historically undertested and under-reported in infection statistics.

18.
J Comput Chem ; 43(2): 84-95, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34741467

RESUMEN

Docking studies play a critical role in the current workflow of drug discovery. However, limitations may often arise through factors including inadequate ligand sampling, a lack of protein flexibility, scoring function inadequacies (e.g., due to metals, co-factors, etc.), and difficulty in retaining explicit water molecules. Herein, we present a novel CHARMM-based induced fit docking (CIFDock) workflow that can circumvent these limitations by employing all-atom force fields coupled to enhanced sampling molecular dynamics procedures. Self-guided Langevin dynamics simulations are used to effectively sample relevant ligand conformations, side chain orientations, crystal water positions, and active site residue motion. Protein flexibility is further enhanced by dynamic sampling of side chain orientations using an expandable rotamer library. Steps in the procedure consisting of fixing individual components (e.g., the ligand) while sampling the other components (e.g., the residues in the active site of the protein) allow for the complex to adapt to conformational changes. Ultimately, all components of the complex-the protein, ligand, and waters-are sampled simultaneously and unrestrained with SGLD to capture any induced fit effects. This modular flexible docking procedure is automated using CHARMM scripting, interfaced with SLURM array processing, and parallelized to use the desired number of processors. We validated the CIFDock procedure by performing cross-docking studies using a data set comprised of 21 pharmaceutically relevant proteins. Five variants of the CHARMM-based SWISSDOCK scoring functions were created to quantify the results of the final generated poses. Results obtained were comparable to, or in some cases improved upon, commercial docking program data.


Asunto(s)
Simulación del Acoplamiento Molecular , Proteínas/química , Ligandos , Termodinámica , Agua/química
19.
bioRxiv ; 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34816263

RESUMEN

We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus ob-scure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized. ACM REFERENCE FORMAT: Abigail Dommer 1† , Lorenzo Casalino 1† , Fiona Kearns 1† , Mia Rosenfeld 1 , Nicholas Wauer 1 , Surl-Hee Ahn 1 , John Russo, 2 Sofia Oliveira 3 , Clare Morris 1 , AnthonyBogetti 4 , AndaTrifan 5,6 , Alexander Brace 5,7 , TerraSztain 1,8 , Austin Clyde 5,7 , Heng Ma 5 , Chakra Chennubhotla 4 , Hyungro Lee 9 , Matteo Turilli 9 , Syma Khalid 10 , Teresa Tamayo-Mendoza 11 , Matthew Welborn 11 , Anders Christensen 11 , Daniel G. A. Smith 11 , Zhuoran Qiao 12 , Sai Krishna Sirumalla 11 , Michael O'Connor 11 , Frederick Manby 11 , Anima Anandkumar 12,13 , David Hardy 6 , James Phillips 6 , Abraham Stern 13 , Josh Romero 13 , David Clark 13 , Mitchell Dorrell 14 , Tom Maiden 14 , Lei Huang 15 , John McCalpin 15 , Christo- pherWoods 3 , Alan Gray 13 , MattWilliams 3 , Bryan Barker 16 , HarindaRajapaksha 16 , Richard Pitts 16 , Tom Gibbs 13 , John Stone 6 , Daniel Zuckerman 2 *, Adrian Mulholland 3 *, Thomas MillerIII 11,12 *, ShantenuJha 9 *, Arvind Ramanathan 5 *, Lillian Chong 4 *, Rommie Amaro 1 *. 2021. #COVIDisAirborne: AI-Enabled Multiscale Computational Microscopy ofDeltaSARS-CoV-2 in a Respiratory Aerosol. In Supercomputing '21: International Conference for High Perfor-mance Computing, Networking, Storage, and Analysis . ACM, New York, NY, USA, 14 pages. https://doi.org/finalDOI.

20.
Nat Chem ; 13(10): 963-968, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34413500

RESUMEN

SARS-CoV-2 infection is controlled by the opening of the spike protein receptor binding domain (RBD), which transitions from a glycan-shielded 'down' to an exposed 'up' state to bind the human angiotensin-converting enzyme 2 receptor and infect cells. While snapshots of the 'up' and 'down' states have been obtained by cryo-electron microscopy and cryo-electron tomagraphy, details of the RBD-opening transition evade experimental characterization. Here over 130 µs of weighted ensemble simulations of the fully glycosylated spike ectodomain allow us to characterize more than 300 continuous, kinetically unbiased RBD-opening pathways. Together with ManifoldEM analysis of cryo-electron microscopy data and biolayer interferometry experiments, we reveal a gating role for the N-glycan at position N343, which facilitates RBD opening. Residues D405, R408 and D427 also participate. The atomic-level characterization of the glycosylated spike activation mechanism provided herein represents a landmark study for ensemble pathway simulations and offers a foundation for understanding the fundamental mechanisms of SARS-CoV-2 viral entry and infection.


Asunto(s)
Polisacáridos/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Microscopía por Crioelectrón , Humanos , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...