Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 370, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37491206

RESUMEN

BACKGROUND: Extensive population growth and climate change accelerate the search for alternative ways of plant-based biomass, biofuel and feed production. Here, we focus on hitherto unknow, new promising cold-stimulated function of phospholipid:diacylglycerol acyltransferase1 (PDAT1) - an enzyme catalyzing the last step of triacylglycerol (TAG) biosynthesis. RESULT: Overexpression of AtPDAT1 boosted seed yield by 160% in Arabidopsis plants exposed to long-term cold compared to standard conditions. Such seeds increased both their weight and acyl-lipids content. This work also elucidates PDAT1's role in leaves, which was previously unclear. Aerial parts of AtPDAT1-overexpressing plants were characterized by accelerated growth at early and vegetative stages of development and by biomass weighing three times more than control. Overexpression of PDAT1 increased the expression of SUGAR-DEPENDENT1 (SDP1) TAG lipase and enhanced lipid remodeling, driving lipid turnover and influencing biomass increment. This effect was especially pronounced in cold conditions, where the elevated synergistic expression of PDAT1 and SDP1 resulted in double biomass increase compared to standard conditions. Elevated phospholipid remodeling also enhanced autophagy flux in AtPDAT1-overexpresing lines subjected to cold, despite the overall diminished autophagy intensity in cold conditions. CONCLUSIONS: Our data suggest that PDAT1 promotes greater vitality in cold-exposed plants, stimulates their longevity and boosts oilseed oil production at low temperature.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fosfolípidos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Diglicéridos/metabolismo , Triglicéridos , Arabidopsis/metabolismo , Plantas/metabolismo , Semillas , Plantas Modificadas Genéticamente/metabolismo , Aceites de Plantas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo
2.
Cells ; 10(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34571973

RESUMEN

Acyl-lipids are vital components for all life functions of plants. They are widely studied using often in vitro conditions to determine inter alia the impact of genetic modifications and the description of biochemical and physiological functions of enzymes responsible for acyl-lipid metabolism. What is currently lacking is knowledge of if these results also hold in real environments-in in vivo conditions. Our study focused on the comparative analysis of both in vitro and in vivo growth conditions and their impact on the acyl-lipid metabolism of Camelina sativa leaves. The results indicate that in vitro conditions significantly decreased the lipid contents and influenced their composition. In in vitro conditions, galactolipid and trienoic acid (16:3 and 18:3) contents significantly declined, indicating the impairment of the prokaryotic pathway. Discrepancies also exist in the case of acyl-CoA:lysophospholipid acyltransferases (LPLATs). Their activity increased about 2-7 times in in vitro conditions compared to in vivo. In vitro conditions also substantially changed LPLATs' preferences towards acyl-CoA. Additionally, the acyl editing process was three times more efficient in in vitro leaves. The provided evidence suggests that the results of acyl-lipid research from in vitro conditions may not completely reflect and be directly applicable in real growth environments.


Asunto(s)
Acilcoenzima A/metabolismo , Camellia/metabolismo , Galactolípidos/metabolismo , Lípidos/fisiología , Lisofosfolípidos/metabolismo , Hojas de la Planta/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Especificidad por Sustrato/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA