Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(9): 7664-7673, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38369945

RESUMEN

Samarium hexaboride, SmB6, is a negative thermal expansion (NTE) material whose structure is similar to other known NTE materials such as the family of Prussian blues. In the Prussian blues, NTE is due to a phonon mechanism, but we recently showed from DFT calculations that this is unlikely in SmB6 (Li et al., Phys. Chem. Chem. Phys. 2023, 25, 10749). We now report experimental X-ray diffraction and pair distribution function analysis of this material in the temperature range 20-300 K. The interatomic distances shown by both methods are consistent with the NTE instead arising from an electronic effect, by which the samarium atoms lose electrons and thus have a smaller ionic radius as the temperature increases.

2.
Acta Crystallogr C Struct Chem ; 78(Pt 5): 271-279, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35510432

RESUMEN

Hydroxyapatite (HA) is a complex material, which is often nanocrystalline when found within a biological setting. This work has directly compared the structural characteristics derived from data collected using a conventional laboratory-based X-ray diffractometer with those collected from a dedicated pair distribution function (PDF) beamline at Diamond Light Source. In particular, the application of PDF analysis methods to carbonated HA is evaluated. 20 synthetic samples were measured using both X-ray diffraction (XRD) and PDFs. Both Rietveld refinement (of laboratory XRD data) and real-space refinement (of PDF data) were used to analyse all samples. The results of Rietveld and real-space refinements were compared to evaluate their application to crystalline and nanocrystalline hydroxyapatite. Significant relationships were observed between real-space refinement parameters and increasing carbonate substitution. Understanding the local order of synthetic hydroxyapatite can benefit several fields, including both biomedical and clinical settings.


Asunto(s)
Carbonatos , Durapatita , Carbonatos/química , Cristalografía por Rayos X , Durapatita/química , Enlace de Hidrógeno , Difracción de Rayos X
3.
Chem Mater ; 34(5): 2187-2196, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35578693

RESUMEN

Melt-quenched metal-organic framework (MOF) glasses have gained significant interest as the first new category of glass reported in 50 years. In this work, an amine-functionalized zeolitic imidazolate framework (ZIF), denoted ZIF-UC-6, was prepared and demonstrated to undergo both melting and glass formation. The presence of an amine group resulted in a lower melting temperature compared to other ZIFs, while also allowing material properties to be tuned by post-synthetic modification (PSM). As a prototypical example, the ZIF glass surface was functionalized with octyl isocyanate, changing its behavior from hydrophilic to hydrophobic. PSM therefore provides a promising strategy for tuning the surface properties of MOF glasses.

4.
Small Methods ; 6(6): e2200420, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460216

RESUMEN

Intermetallic nanoparticles (NPs) have shown enhanced catalytic properties as compared to their disordered alloy counterparts. To advance their use in green energy, it is crucial to understand what controls the formation of intermetallic NPs over alloy structures. By carefully selecting the additives used in NP synthesis, it is here shown that monodisperse, intermetallic PdCu NPs can be synthesized in a controllable manner. Introducing the additives iron(III) chloride and ascorbic acid, both morphological and structural control can be achieved. Combined, these additives provide a synergetic effect resulting in precursor reduction and defect-free growth; ultimately leading to monodisperse, single-crystalline, intermetallic PdCu NPs. Using in situ X-ray total scattering, a hitherto unknown transformation pathway is reported that diverges from the commonly reported coreduction disorder-order transformation. A Cu-rich structure initially forms, which upon the incorporation of Pd(0) and atomic ordering forms intermetallic PdCu NPs. These findings underpin that formation of stoichiometric intermetallic NPs is not limited by standard reduction potential matching and coreduction mechanisms, but is instead driven by changes in the local chemistry. Ultimately, using the local chemistry as a handle to tune the NP structure might open new opportunities to expand the library of intermetallic NPs by exploiting synthesis by design.


Asunto(s)
Compuestos Férricos , Nanopartículas , Aleaciones/química , Catálisis , Hierro , Nanopartículas/química
5.
J Am Chem Soc ; 143(47): 19668-19683, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34784470

RESUMEN

The structures of Zr and Hf metal-organic frameworks (MOFs) are very sensitive to small changes in synthetic conditions. One key difference affecting the structure of UiO MOF phases is the shape and nuclearity of Zr or Hf metal clusters acting as nodes in the framework; although these clusters are crucial, their evolution during MOF synthesis is not fully understood. In this paper, we explore the nature of Hf metal clusters that form in different reaction solutions, including in a mixture of DMF, formic acid, and water. We show that the choice of solvent and reaction temperature in UiO MOF syntheses determines the cluster identity and hence the MOF structure. Using in situ X-ray pair distribution function measurements, we demonstrate that the evolution of different Hf cluster species can be tracked during UiO MOF synthesis, from solution stages to the full crystalline framework, and use our understanding to propose a formation mechanism for the hcp UiO-66(Hf) MOF, in which first the metal clusters aggregate from the M6 cluster (as in fcu UiO-66) to the hcp-characteristic M12 double cluster and, following this, the crystalline hcp framework forms. These insights pave the way toward rationally designing syntheses of as-yet unknown MOF structures, via tuning the synthesis conditions to select different cluster species.

6.
Chem Commun (Camb) ; 57(73): 9272-9275, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34519299

RESUMEN

Zeolitic imidazolate frameworks (ZIFs) can be melt-quenched to form glasses. Here, we present an alternative route to glassy ZIFs via mechanically induced amorphisation. This approach allows various glassy ZIFs to be produced in under 30 minutes at room temperature, without the need for melt-quenching.

7.
J Am Chem Soc ; 143(35): 14274-14286, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34431677

RESUMEN

Hard carbons are the leading candidate anode materials for sodium-ion batteries. However, the sodium-insertion mechanisms remain under debate. Here, employing a novel analysis of operando and ex situ pair distribution function (PDF) analysis of total scattering data, supplemented by information on the local electronic structure provided by operando 23Na solid-state NMR, we identify the local atomic environments of sodium stored within hard carbon and provide a revised mechanism for sodium storage. The local structure of carbons is well-described by bilayers of curved graphene fragments, with fragment size increasing, and curvature decreasing with increasing pyrolysis temperature. A correlation is observed between the higher-voltage (slope) capacity and the defect concentration inferred from the size and curvature of the fragments. Meanwhile, a larger lower-voltage (plateau) capacity is observed in samples modeled by larger fragment sizes. Operando PDF data on two commercially relevant hard carbons reveal changes at higher-voltages consistent with sodium ions stored close to defective areas of the carbon, with electrons localized in the antibonding π*-orbitals of the carbon. Metallic sodium clusters approximately 13-15 Å in diameter are formed in both carbons at lower voltages, implying that, for these carbons, the lower-voltage capacity is determined by the number of regions suitable for sodium cluster formation, rather than by having microstructures that allow larger clusters to form. Our results reveal that local atomic structure has a definitive role in determining storage capacity, and therefore the effect of synthetic conditions on both the local atomic structure and the microstructure should be considered when engineering hard carbons.

8.
Nat Chem ; 13(8): 778-785, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33972755

RESUMEN

Several organic-inorganic hybrid materials from the metal-organic framework (MOF) family have been shown to form stable liquids at high temperatures. Quenching then results in the formation of melt-quenched MOF glasses that retain the three-dimensional coordination bonding of the crystalline phase. These hybrid glasses have intriguing properties and could find practical applications, yet the melt-quench phenomenon has so far remained limited to a few MOF structures. Here we turn to hybrid organic-inorganic perovskites-which occupy a prominent position within materials chemistry owing to their functional properties such as ion transport, photoconductivity, ferroelectricity and multiferroicity-and show that a series of dicyanamide-based hybrid organic-inorganic perovskites undergo melting. Our combined experimental-computational approach demonstrates that, on quenching, they form glasses that largely retain their solid-state inorganic-organic connectivity. The resulting materials show very low thermal conductivities (~0.2 W m-1 K-1), moderate electrical conductivities (10-3-10-5 S m-1) and polymer-like thermomechanical properties.

9.
Inorg Chem ; 60(10): 7062-7069, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33944556

RESUMEN

The sol-gel synthesis of iron carbide (Fe3C) nanoparticles proceeds through multiple intermediate crystalline phases, including iron oxide (FeOx) and iron nitride (Fe3N). The control of particle size is challenging, and most methods produce polydisperse Fe3C nanoparticles of 20-100 nm in diameter. Given the wide range of applications of Fe3C nanoparticles, it is essential that we understand the evolution of the system during the synthesis. Here, we report an in situ synchrotron total scattering study of the formation of Fe3C from gelatin and iron nitrate sol-gel precursors. A pair distribution function analysis reveals a dramatic increase in local ordering between 300 and 350 °C, indicating rapid nucleation and growth of iron oxide nanoparticles. The oxide intermediate remains stable until the emergence of Fe3N at 600 °C. Structural refinement of the high-temperature data revealed local distortion of the NFe6 octahedra, resulting in a change in the twist angle suggestive of a carbonitride intermediate. This work demonstrates the importance of intermediate phases in controlling the particle size of a sol-gel product. It is also, to the best of our knowledge, the first example of in situ total scattering analysis of a sol-gel system.

10.
Dalton Trans ; 50(14): 5011-5022, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33877199

RESUMEN

Defect engineering is a powerful tool that can be used to tailor the properties of metal-organic frameworks (MOFs). Here, we incorporate defects through ball milling to systematically vary the porosity of the giant pore MOF, MIL-100 (Fe). We show that milling leads to the breaking of metal-linker bonds, generating additional coordinatively unsaturated metal sites, and ultimately causes amorphisation. Pair distribution function analysis shows the hierarchical local structure is partially retained, even in the amorphised material. We find that solvents can be used to stabilise the MIL-100 (Fe) framework against collapse, which leads to a substantial retention of porosity over the non-stabilised material.

11.
Sci Rep ; 10(1): 19597, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177578

RESUMEN

Biogenic and synthetic hydroxyapatites are confounding materials whose properties remain uncertain, even after years of study. Pair distribution function (PDF) analysis was applied to hydroxyapatites in the 1970's and 1980's, but this area of research has not taken full advantage of the relatively recent advances in synchrotron facilities. Here, synchrotron X-ray PDF analysis is compared to techniques commonly used to characterise hydroxyapatite (such as wide angle X-ray scattering, Fourier-transform infrared spectroscopy and thermogravimetric analysis) for a range of biogenic and synthetic hydroxyapatites with a wide range of carbonate substitution. Contributions to the pair distribution function from collagen, carbonate and finite crystallite size were examined through principal component analysis and comparison of PDFs. Noticeable contributions from collagen were observed in biogenic PDFs when compared to synthetic PDFs (namely r < 15 Å), consistent with simulated PDFs of collagen structures. Additionally, changes in local structure were observed for PDFs of synthetic hydroxyapatites with differing carbonate content, notably in features near 4 Å, 8 Å and 19 Å. Regression models were generated to predict carbonate substitution from peak position within the PDFs.

12.
Nat Commun ; 11(1): 5800, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33199681

RESUMEN

Metal-organic framework (MOF) glasses have become a subject of interest as a distinct category of melt quenched glass, and have potential applications in areas such as ion transport and sensing. In this paper we show how MOF glasses can be combined with inorganic glasses in order to fabricate a new family of materials composed of both MOF and inorganic glass domains. We use an array of experimental techniques to propose the bonding between inorganic and MOF domains, and show that the composites produced are more mechanically pliant than the inorganic glass itself.

13.
J Synchrotron Radiat ; 27(Pt 5): 1190-1199, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32876593

RESUMEN

In situ electrochemical cycling combined with total scattering measurements can provide valuable structural information on crystalline, semi-crystalline and amorphous phases present during (dis)charging of batteries. In situ measurements are particularly challenging for total scattering experiments due to the requirement for low, constant and reproducible backgrounds. Poor cell design can introduce artefacts into the total scattering data or cause inhomogeneous electrochemical cycling, leading to poor data quality or misleading results. This work presents a new cell design optimized to provide good electrochemical performance while performing bulk multi-scale characterizations based on total scattering and pair distribution function methods, and with potential for techniques such as X-ray Raman spectroscopy. As an example, the structural changes of a nanostructured high-capacity cathode with a disordered rock-salt structure and composition Li4Mn2O5 are demonstrated. The results show that there is no contribution to the recorded signal from other cell components, and a very low and consistent contribution from the cell background.

14.
Inorg Chem ; 59(16): 11704-11714, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32799476

RESUMEN

Mixed-metal cyanides (Cu1/2Au1/2)CN, (Ag1/2Au1/2)CN, and (Cu1/3Ag1/3Au1/3)CN adopt an AuCN-type structure in which metal-cyanide chains pack on a hexagonal lattice with metal atoms arranged in sheets. The interactions between and within the metal-cyanide chains are investigated using density functional theory (DFT) calculations, 13C solid-state NMR (SSNMR), and X-ray pair distribution function (PDF) measurements. Long-range metal and cyanide order is found within the chains: (-Cu-NC-Au-CN-)∞, (-Ag-NC-Au-CN-)∞, and (-Cu-NC-Ag-NC-Au-CN-)∞. Although Bragg diffraction studies establish that there is no long-range order between chains, X-ray PDF results show that there is local order between chains. In (Cu1/2Au1/2)CN and (Ag1/2Au1/2)CN, there is a preference for unlike metal atoms occurring as nearest neighbors within the metal sheets. A general mathematical proof shows that the maximum average number of heterometallic nearest-neighbor interactions on a hexagonal lattice with two types of metal atoms is four. Calculated energies of periodic structural models show that those with four unlike nearest neighbors are most favorable. Of these, models in space group Immm give the best fits to the X-ray PDF data out to 8 Å, providing good descriptions of the short- and medium-range structures. This result shows that interactions beyond those of nearest neighbors must be considered when determining the structures of these materials. Such interactions are also important in (Cu1/3Ag1/3Au1/3)CN, leading to the adoption of a structure in Pmm2 containing mixed Cu-Au and Ag-only sheets arranged to maximize the numbers of Cu···Au nearest- and next-nearest-neighbor interactions.

15.
J Synchrotron Radiat ; 27(Pt 2): 529-537, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32153294

RESUMEN

A new diamond-anvil cell apparatus for in situ synchrotron X-ray diffraction measurements of liquids and glasses, at pressures from ambient to 5 GPa and temperatures from ambient to 1300 K, is reported. This portable setup enables in situ monitoring of the melting of complex compounds and the determination of the structure and properties of melts under moderately high pressure and high temperature conditions relevant to industrial processes and magmatic processes in the Earth's crust and shallow mantle. The device was constructed according to a modified Bassett-type hydrothermal diamond-anvil cell design with a large angular opening (θ = 95°). This paper reports the successful application of this device to record in situ synchrotron X-ray diffraction of liquid Ga and synthetic PbSiO3 glass to 1100 K and 3 GPa.

16.
J Am Chem Soc ; 142(8): 3880-3890, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-31978302

RESUMEN

The synthesis of four novel crystalline zeolitic imidazolate framework (ZIF) structures using a mixed-ligand approach is reported. The inclusion of both imidazolate and halogenated benzimidazolate-derived linkers leads to glass-forming behavior by all four structures. Melting temperatures are observed to depend on both electronic and steric effects. Solid-state NMR and terahertz (THz)/far-IR demonstrate the presence of a Zn-F bond for fluorinated ZIF glasses. In situ THz/far-IR spectroscopic techniques reveal the dynamic structural properties of crystal, glass, and liquid phases of the halogenated ZIFs, linking the melting behavior of ZIFs to the propensity of the ZnN4 tetrahedra to undergo thermally induced deformation. The inclusion of halogenated ligands within metal-organic framework (MOF) glasses improves their gas-uptake properties.

17.
Phys Chem Chem Phys ; 21(45): 25369-25378, 2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31709430

RESUMEN

Protic ionic liquids (PIL) were prepared from a super-strong base 1,7-diazabicyclo[5.4.0]undec-7-ene (DBU) and super-strong acids, trifluoromethane sulfonic acid (TfOH), and (trifluoromethanesulfonyl)-(nonafluorobutylsulfonyl)imide, (IM14H), ([DBUH][TfO] and [DBUH][IM14], respectively; the latter for the first time) and their chemical and physical properties and structural features have been explored using a synergy of experimental and computational tools. The short range order in neat DBU, as well as the long range structural correlations induced by charge correlation and hydrogen bonding interactions in the ionic liquids, have been explored under ambient conditions, where these compounds are proposed for a variety of applications. Similar to other [DBUH]-based PILs, the probed ones behave as good ionic liquids. Molecular dynamics-rationalised X-ray diffraction patterns show the major role played by hydrogen bonding in affecting morphology in these systems. Additionally, we find further evidence for the existence of fluorous domains in [DBUH][IM14], thus potentially extending the range of applications for these PILs.

18.
Nanoscale ; 11(45): 21900-21908, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31701975

RESUMEN

Four types of magic-size CdS clusters and three different CdS quantum dots have been studied using the technique of X-ray total scattering and pair distribution function analysis. We found that the CdS quantum dots could be modelled as a mixed phase of atomic structures based on the two bulk crystalline phases, which is interpreted as representing the effects of random stacking of layers. However, the results for the magic-size clusters are significantly different. On one hand, the short-range features in the pair distribution function reflect the bulk, indicating that these structures are based on the same tetrahedral coordination found in the bulk phases (and therefore excluding new types of structures such as cage-like arrangements of atoms). But on the other hand, the longer-range atomic structure clearly does not reflect the layer structures found in the bulk and the quantum dots. We compare the effect of two ligands, phenylacetic acid and oleic acid, showing that in one case the ligand has little effect on the atomic structure of the magic-size nanocluster, and in another it has a significant effect.

19.
Opt Express ; 27(11): 16121-16142, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163798

RESUMEN

The Diamond Light Source (DLS) beamline I15-1 measures atomic pair distribution functions (PDF) using scattering of 40-80 keV X-rays. A unique focusing element was needed to condense these X-rays from an initial large cross section (11.0 mm H × 4.2 mm V) into a required spot size of FWHM ≈680 µm (H) × 20 µm (V) at a variable position between the sample and the detector. The large numerical aperture is achieved by coating a silicon substrate over 1 m long with three multilayer stripes of Bragg angle 4.2 mrad. One stripe selects X-rays of each energy 40.0, 65.4, and 76.6 keV. Sixteen piezoelectric bimorph actuators attached to the sides of the mirror substrate adjusted the reflecting surface's shape. Focal spots of vertical width < 15 µm were obtained at three positions over a 0.92 m range, with fast, easy switching from one focal position to another. Minimized root mean square slope errors were close to 0.5 µrad after subtraction of a uniform curvature. Reflectivity curves taken along each stripe showed consistent high peaks with generally small angular variation of peak positions. This is the first application of a 1 m long multilayer-coated bimorph mirror at a synchrotron beamline. Data collected with its help on a slice of a lithium ion battery's cathode are presented.

20.
J Synchrotron Radiat ; 25(Pt 6): 1860-1868, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30407199

RESUMEN

In this article, the specification and application of the new double-sided YAG laser-heating system built on beamline I15 at Diamond Light Source are presented. This system, combined with diamond anvil cell and X-ray diffraction techniques, allows in situ and ex situ characterization of material properties at extremes of pressure and temperature. In order to demonstrate the reliability and stability of this experimental setup over a wide range of pressure and temperature, a case study was performed and the phase diagram of lead was investigated up to 80 GPa and 3300 K. The obtained results agree with previously published experimental and theoretical data, underlining the quality and reliability of the installed setup.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA