Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Alzheimers Dement ; 20(4): 2680-2697, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38380882

RESUMEN

INTRODUCTION: Amyloidosis, including cerebral amyloid angiopathy, and markers of small vessel disease (SVD) vary across dominantly inherited Alzheimer's disease (DIAD) presenilin-1 (PSEN1) mutation carriers. We investigated how mutation position relative to codon 200 (pre-/postcodon 200) influences these pathologic features and dementia at different stages. METHODS: Individuals from families with known PSEN1 mutations (n = 393) underwent neuroimaging and clinical assessments. We cross-sectionally evaluated regional Pittsburgh compound B-positron emission tomography uptake, magnetic resonance imaging markers of SVD (diffusion tensor imaging-based white matter injury, white matter hyperintensity volumes, and microhemorrhages), and cognition. RESULTS: Postcodon 200 carriers had lower amyloid burden in all regions but worse markers of SVD and worse Clinical Dementia Rating® scores compared to precodon 200 carriers as a function of estimated years to symptom onset. Markers of SVD partially mediated the mutation position effects on clinical measures. DISCUSSION: We demonstrated the genotypic variability behind spatiotemporal amyloidosis, SVD, and clinical presentation in DIAD, which may inform patient prognosis and clinical trials. HIGHLIGHTS: Mutation position influences Aß burden, SVD, and dementia. PSEN1 pre-200 group had stronger associations between Aß burden and disease stage. PSEN1 post-200 group had stronger associations between SVD markers and disease stage. PSEN1 post-200 group had worse dementia score than pre-200 in late disease stage. Diffusion tensor imaging-based SVD markers mediated mutation position effects on dementia in the late stage.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedades de los Pequeños Vasos Cerebrales , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/genética , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Imagen de Difusión Tensora , Imagen por Resonancia Magnética , Mutación/genética , Presenilina-1/genética
2.
Neuroimage Clin ; 41: 103551, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38150745

RESUMEN

The use of biomarkers for the early detection of Alzheimer's disease (AD) is crucial for developing potential therapeutic treatments. Positron Emission Tomography (PET) is a well-established tool used to detect ß-amyloid (Aß) plaques in the brain. Previous studies have shown that cross-sectional biomarkers can predict cognitive decline (Schindler et al.,2021). However, it is still unclear whether longitudinal Aß-PET may have additional value for predicting time to cognitive impairment in AD. The current study aims to evaluate the ability of baseline- versus longitudinal rate of change in-11C-Pittsburgh compound B (PiB) Aß-PET to predict cognitive decline. A cohort of 153 participants who previously underwent PiB-PET scans and comprehensive clinical assessments were used in this study. Our analyses revealed that baseline Aß is significantly associated with the rate of change in cognitive composite scores, with cognition declining more rapidly when baseline PiB Aß levels were higher. In contrast, no signification association was identified between the rate of change in PiB-PET Aß and cognitive decline. Additionally, the ability of the rate of change in the PiB-PET measures to predict cognitive decline was significantly influenced by APOE ε4 carrier status. These results suggest that a single PiB-PET scan is sufficient to predict cognitive decline and that longitudinal measures of Aß accumulation do not improve the prediction of cognitive decline once someone is amyloid positive.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Estudios Transversales , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Amiloide/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Biomarcadores , Tomografía de Emisión de Positrones/métodos , Estudios Longitudinales
3.
Nat Neurosci ; 26(8): 1449-1460, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37429916

RESUMEN

The Dominantly Inherited Alzheimer Network (DIAN) is an international collaboration studying autosomal dominant Alzheimer disease (ADAD). ADAD arises from mutations occurring in three genes. Offspring from ADAD families have a 50% chance of inheriting their familial mutation, so non-carrier siblings can be recruited for comparisons in case-control studies. The age of onset in ADAD is highly predictable within families, allowing researchers to estimate an individual's point in the disease trajectory. These characteristics allow candidate AD biomarker measurements to be reliably mapped during the preclinical phase. Although ADAD represents a small proportion of AD cases, understanding neuroimaging-based changes that occur during the preclinical period may provide insight into early disease stages of 'sporadic' AD also. Additionally, this study provides rich data for research in healthy aging through inclusion of the non-carrier controls. Here we introduce the neuroimaging dataset collected and describe how this resource can be used by a range of researchers.


Asunto(s)
Enfermedad de Alzheimer , Artrogriposis , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Tomografía de Emisión de Positrones , Imagen por Resonancia Magnética , Neuroimagen , Mutación/genética , Péptidos beta-Amiloides/genética
4.
J Nucl Med ; 64(2): 287-293, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35953305

RESUMEN

Off-target binding of [18F]flortaucipir (FTP) can complicate quantitative PET analyses. An underdiscussed off-target region is the skull. Here, we characterize how often FTP skull binding occurs, its influence on estimates of Alzheimer disease pathology, its potential drivers, and whether skull uptake is a stable feature across time and tracers. Methods: In 313 cognitively normal and mildly impaired participants, CT scans were used to define a skull mask. This mask was used to quantify FTP skull uptake. Skull uptake of the amyloid-ß PET tracers [18F]florbetapir and [11C]Pittsburgh compound B (n = 152) was also assessed. Gaussian mixture modeling defined abnormal levels of skull binding for each tracer. We examined the relationship of continuous bone uptake to known off-target binding in the basal ganglia and choroid plexus as well as skull density measured from the CT. Finally, we examined the confounding effect of skull binding on pathologic quantification. Results: We found that 50 of 313 (∼16%) FTP scans had high levels of skull signal. Most were female (n = 41, 82%), and in women, lower skull density was related to higher FTP skull signal. Visual reads by a neuroradiologist revealed a significant relationship with hyperostosis; however, only 21% of women with high skull binding were diagnosed with hyperostosis. FTP skull signal did not substantially correlate with other known off-target regions. Skull uptake was consistent over longitudinal FTP scans and across tracers. In amyloid-ß-negative, but not -positive, individuals, FTP skull binding impacted quantitative estimates in temporal regions. Conclusion: FTP skull binding is a stable, participant-specific phenomenon and is unrelated to known off-target regions. Effects were found primarily in women and were partially related to lower bone density. The presence of [11C]Pittsburgh compound B skull binding suggests that defluorination does not fully explain FTP skull signal. As signal in skull bone can impact quantitative analyses and differs across sex, it should be explicitly addressed in studies of aging and Alzheimer disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Femenino , Masculino , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Tomografía de Emisión de Positrones , Cráneo/diagnóstico por imagen , Cráneo/metabolismo , Péptidos beta-Amiloides/metabolismo , Amiloide/metabolismo , Proteínas tau/metabolismo , Carbolinas/metabolismo , Disfunción Cognitiva/metabolismo
5.
Sci Transl Med ; 14(671): eabl7646, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36383681

RESUMEN

The apolipoprotein E (APOE) ε4 allele is strongly linked with cerebral ß-amyloidosis, but its relationship with tauopathy is less established. We investigated the relationship between APOE ε4 carrier status, regional amyloid-ß (Aß), magnetic resonance imaging (MRI) volumetrics, tau positron emission tomography (PET), APOE messenger RNA (mRNA) expression maps, and cerebrospinal fluid phosphorylated tau (CSF ptau181). Three hundred fifty participants underwent imaging, and 270 had ptau181. We used computational models to evaluate the main effect of APOE ε4 carrier status on regional neuroimaging values and then the interaction of ε4 status and global Aß on regional tau PET and brain volumes as well as CSF ptau181. Separately, we also examined the additional interactive influence of sex. We found that, for the same degree of Aß burden, APOE ε4 carriers showed greater tau PET signal relative to noncarriers in temporal regions, but no interaction was present for MRI volumes or CSF ptau181. This potentiation of tau aggregation irrespective of sex occurred in brain regions with high APOE mRNA expression, suggesting local vulnerabilities to tauopathy. There were greater effects of APOE genotype in females, although the interactive sex effects did not strongly mirror mRNA expression. Pathology is not homogeneously expressed throughout the brain but mirrors underlying biological patterns such as gene expression.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Femenino , Humanos , Apolipoproteína E4/genética , Proteínas tau/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Apolipoproteínas E/genética , Genotipo , Tomografía de Emisión de Positrones , Encéfalo/metabolismo
6.
Brain Commun ; 2(2): fcaa102, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32954344

RESUMEN

Structural grey matter covariance networks provide an individual quantification of morphological patterns in the brain. The network integrity is disrupted in sporadic Alzheimer's disease, and network properties show associations with the level of amyloid pathology and cognitive decline. Therefore, these network properties might be disease progression markers. However, it remains unclear when and how grey matter network integrity changes with disease progression. We investigated these questions in autosomal dominant Alzheimer's disease mutation carriers, whose conserved age at dementia onset allows individual staging based upon their estimated years to symptom onset. From the Dominantly Inherited Alzheimer Network observational cohort, we selected T1-weighted MRI scans from 269 mutation carriers and 170 non-carriers (mean age 38 ± 15 years, mean estimated years to symptom onset -9 ± 11), of whom 237 had longitudinal scans with a mean follow-up of 3.0 years. Single-subject grey matter networks were extracted, and we calculated for each individual the network properties which describe the network topology, including the size, clustering, path length and small worldness. We determined at which time point mutation carriers and non-carriers diverged for global and regional grey matter network metrics, both cross-sectionally and for rate of change over time. Based on cross-sectional data, the earliest difference was observed in normalized path length, which was decreased for mutation carriers in the precuneus area at 13 years and on a global level 12 years before estimated symptom onset. Based on longitudinal data, we found the earliest difference between groups on a global level 6 years before symptom onset, with a greater rate of decline of network size for mutation carriers. We further compared grey matter network small worldness with established biomarkers for Alzheimer disease (i.e. amyloid accumulation, cortical thickness, brain metabolism and cognitive function). We found that greater amyloid accumulation at baseline was associated with faster decline of small worldness over time, and decline in grey matter network measures over time was accompanied by decline in brain metabolism, cortical thinning and cognitive decline. In summary, network measures decline in autosomal dominant Alzheimer's disease, which is alike sporadic Alzheimer's disease, and the properties show decline over time prior to estimated symptom onset. These data suggest that single-subject networks properties obtained from structural MRI scans form an additional non-invasive tool for understanding the substrate of cognitive decline and measuring progression from preclinical to severe clinical stages of Alzheimer's disease.

7.
Neuroimage Clin ; 28: 102491, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33395982

RESUMEN

Defining a signature of cortical regions of interest preferentially affected by Alzheimer disease (AD) pathology may offer improved sensitivity to early AD compared to hippocampal volume or mesial temporal lobe alone. Since late-onset Alzheimer disease (LOAD) participants tend to have age-related comorbidities, the younger-onset age in autosomal dominant AD (ADAD) may provide a more idealized model of cortical thinning in AD. To test this, the goals of this study were to compare the degree of overlap between the ADAD and LOAD cortical thinning maps and to evaluate the ability of the ADAD cortical signature regions to predict early pathological changes in cognitively normal individuals. We defined and analyzed the LOAD cortical maps of cortical thickness in 588 participants from the Knight Alzheimer Disease Research Center (Knight ADRC) and the ADAD cortical maps in 269 participants from the Dominantly Inherited Alzheimer Network (DIAN) observational study. Both cohorts were divided into three groups: cognitively normal controls (nADRC = 381; nDIAN = 145), preclinical (nADRC = 153; nDIAN = 76), and cognitively impaired (nADRC = 54; nDIAN = 48). Both cohorts underwent clinical assessments, 3T MRI, and amyloid PET imaging with either 11C-Pittsburgh compound B or 18F-florbetapir. To generate cortical signature maps of cortical thickness, we performed a vertex-wise analysis between the cognitively normal controls and impaired groups within each cohort using six increasingly conservative statistical thresholds to determine significance. The optimal cortical map among the six statistical thresholds was determined from a receiver operating characteristic analysis testing the performance of each map in discriminating between the cognitively normal controls and preclinical groups. We then performed within-cohort and cross-cohort (e.g. ADAD maps evaluated in the Knight ADRC cohort) analyses to examine the sensitivity of the optimal cortical signature maps to the amyloid levels using only the cognitively normal individuals (cognitively normal controls and preclinical groups) in comparison to hippocampal volume. We found the optimal cortical signature maps were sensitive to early increases in amyloid for the asymptomatic individuals within their respective cohorts and were significant beyond the inclusion of hippocampus volume, but the cortical signature maps performed poorly when analyzing across cohorts. These results suggest the cortical signature maps are a useful MRI biomarker of early AD-related neurodegeneration in preclinical individuals and the pattern of decline differs between LOAD and ADAD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Atrofia/patología , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...