Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 6(2): 254-272, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38263317

RESUMEN

Small extracellular vesicles (EVs) are signalling messengers that regulate inter-tissue communication through delivery of their molecular cargo. Here, we show that liver-derived EVs are acute regulators of whole-body glycaemic control in mice. Liver EV secretion into the circulation is increased in response to hyperglycaemia, resulting in increased glucose effectiveness and insulin secretion through direct inter-organ EV signalling to skeletal muscle and the pancreas, respectively. This acute blood glucose lowering effect occurs in healthy and obese mice with non-alcoholic fatty liver disease, despite marked remodelling of the liver-derived EV proteome in obese mice. The EV-mediated blood glucose lowering effects were recapitulated by administration of liver EVs derived from humans with or without progressive non-alcoholic fatty liver disease, suggesting broad functional conservation of liver EV signalling and potential therapeutic utility. Taken together, this work reveals a mechanism whereby liver EVs act on peripheral tissues via endocrine signalling to restore euglycaemia in the postprandial state.


Asunto(s)
Vesículas Extracelulares , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Control Glucémico , Glucemia , Ratones Obesos
2.
Sci Rep ; 13(1): 4711, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949095

RESUMEN

Non-alcoholic steatohepatitis (NASH), characterized as the joint presence of steatosis, hepatocellular ballooning and lobular inflammation, and liver fibrosis are strong contributors to liver-related and overall mortality. Despite the high global prevalence of NASH and the substantial healthcare burden, there are currently no FDA-approved therapies for preventing or reversing NASH and/or liver fibrosis. Importantly, despite nearly 200 pharmacotherapies in different phases of pre-clinical and clinical assessment, most therapeutic approaches that succeed from pre-clinical rodent models to the clinical stage fail in subsequent Phase I-III trials. In this respect, one major weakness is the lack of adequate mouse models of NASH that also show metabolic comorbidities commonly observed in NASH patients, including obesity, type 2 diabetes and dyslipidaemia. This study provides an in-depth comparison of NASH pathology and deep metabolic profiling in eight common inbred mouse strains (A/J, BALB/c, C3H/HeJ, C57BL/6J, CBA/CaH, DBA/2J, FVB/N and NOD/ShiLtJ) fed a western-style diet enriched in fat, sucrose, fructose and cholesterol for eight months. Combined analysis of histopathology and hepatic lipid metabolism, as well as measures of obesity, glycaemic control and insulin sensitivity, dyslipidaemia, adipose tissue lipolysis, systemic inflammation and whole-body energy metabolism points to the FVB/N mouse strain as the most adequate diet-induced mouse model for the recapitulation of metabolic (dysfunction) associated fatty liver disease (MAFLD) and NASH. With efforts in the pharmaceutical industry now focussed on developing multi-faceted therapies; that is, therapies that improve NASH and/or liver fibrosis, and concomitantly treat other metabolic comorbidities, this mouse model is ideally suited for such pre-clinical use.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Ratones Endogámicos C3H , Ratones Endogámicos CBA , Ratones Endogámicos DBA , Ratones Endogámicos NOD , Ratones Endogámicos C57BL , Hígado/metabolismo , Cirrosis Hepática/patología , Inflamación/patología , Obesidad/metabolismo , Modelos Animales de Enfermedad
3.
Am J Physiol Endocrinol Metab ; 324(2): E187-E198, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36629823

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. Dysregulation in hepatic lipid metabolism, including increased fatty acid uptake and de novo lipogenesis (DNL), is a hallmark of NAFLD. Here, we investigated dual inhibition of the fatty acid transporter fatty acid translocase (FAT/CD36), and acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in DNL, for the treatment of NAFLD in mice. Mice with hepatic CD36 deletion (Cd36LKO) and wild-type littermates were fed a high-fat diet for 12 wk and treated daily with either oral administration of an ACC inhibitor (GS-834356, Gilead Sciences; ACCi) or vehicle for 8 wk. Neither CD36 deletion or ACC inhibition impacted body composition, energy expenditure, or glucose tolerance. Cd36LKO mice had elevated fasting plasma insulin, suggesting mild insulin resistance. Whole body fatty acid oxidation was significantly decreased in Cd36LKO mice. Liver triglyceride content was significantly reduced in mice treated with ACCi; however, CD36 deletion caused an unexpected increase in liver triglycerides. This was associated with upregulation of genes and proteins of DNL, including ACC, and decreased liver triglyceride secretion ex vivo. Overall, these data confirm the therapeutic utility of ACC inhibition for steatosis resolution but indicate that inhibition of CD36 is not an effective treatment for NAFLD in mice.NEW & NOTEWORTHY Dysregulation of hepatic lipid metabolism is a hallmark of nonalcoholic fatty liver disease. Here, we show that dual inhibition of the de novo lipogenesis enzyme, ACC, and hepatic deletion of the fatty acid transporter, CD36, was ineffective for the treatment of NAFLD in mice. This was due to a paradoxical increase in liver triglycerides with CD36 deletion resulting from decreased hepatic triglyceride secretion and increased lipogenic gene expression.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Hígado/metabolismo , Triglicéridos/metabolismo , Lipogénesis/genética , Ácidos Grasos/metabolismo
4.
Diabetes ; 72(6): 715-727, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36580496

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) and impaired glycemic control are closely linked; however, the pathophysiological mechanisms underpinning this bidirectional relationship remain unresolved. The high secretory capacity of the liver and impairments in protein secretion in NAFLD suggest that endocrine changes in the liver are likely to contribute to glycemic defects. We identify hexosaminidase A (HEXA) as an NAFLD-induced hepatokine in both mice and humans. HEXA regulates sphingolipid metabolism, converting GM2 to GM3 gangliosides-sphingolipids that are primarily localized to cell-surface lipid rafts. Using recombinant murine HEXA protein, an enzymatically inactive HEXA(R178H) mutant, or adeno-associated virus vectors to induce hepatocyte-specific overexpression of HEXA, we show that HEXA improves blood glucose control by increasing skeletal muscle glucose uptake in mouse models of insulin resistance and type 2 diabetes, with these effects being dependent on HEXA's enzymatic action. Mechanistically, HEXA remodels muscle lipid raft ganglioside composition, thereby increasing IGF-1 signaling and GLUT4 localization to the cell surface. Disrupting lipid rafts reverses these HEXA-mediated effects. In this study, we identify a pathway for intertissue communication between liver and skeletal muscle in the regulation of systemic glycemic control.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Somatomedinas , Humanos , Animales , Ratones , Hexosaminidasa A , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Recombinantes , Glucosa , Músculo Esquelético/metabolismo
5.
Nat Commun ; 13(1): 4233, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882847

RESUMEN

There are currently no treatments for geographic atrophy, the advanced form of age-related macular degeneration. Hence, innovative studies are needed to model this condition and prevent or delay its progression. Induced pluripotent stem cells generated from patients with geographic atrophy and healthy individuals were differentiated to retinal pigment epithelium. Integrating transcriptional profiles of 127,659 retinal pigment epithelium cells generated from 43 individuals with geographic atrophy and 36 controls with genotype data, we identify 445 expression quantitative trait loci in cis that are asssociated with disease status and specific to retinal pigment epithelium subpopulations. Transcriptomics and proteomics approaches identify molecular pathways significantly upregulated in geographic atrophy, including in mitochondrial functions, metabolic pathways and extracellular cellular matrix reorganization. Five significant protein quantitative trait loci that regulate protein expression in the retinal pigment epithelium and in geographic atrophy are identified - two of which share variants with cis- expression quantitative trait loci, including proteins involved in mitochondrial biology and neurodegeneration. Investigation of mitochondrial metabolism confirms mitochondrial dysfunction as a core constitutive difference of the retinal pigment epithelium from patients with geographic atrophy. This study uncovers important differences in retinal pigment epithelium homeostasis associated with geographic atrophy.


Asunto(s)
Atrofia Geográfica , Degeneración Macular , Humanos , Degeneración Macular/genética , Proteómica , Epitelio Pigmentado de la Retina , Transcriptoma/genética
6.
Mol Metab ; 60: 101491, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35381388

RESUMEN

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) is linked to impaired lipid metabolism and systemic insulin resistance, which is partly mediated by altered secretion of liver proteins known as hepatokines. Regular physical activity can resolve NAFLD and improve its metabolic comorbidities, however, the effects of exercise training on hepatokine secretion and the metabolic impact of exercise-regulated hepatokines in NAFLD remain unresolved. Herein, we examined the effect of endurance exercise training on hepatocyte secreted proteins with the aim of identifying proteins that regulate metabolism and reduce NAFLD severity. METHODS: C57BL/6 mice were fed a high-fat diet for six weeks to induce NAFLD. Mice were exercise trained for a further six weeks, while the control group remained sedentary. Hepatocytes were isolated two days after the last exercise bout, and intracellular and secreted proteins were detected using label-free mass spectrometry. Hepatocyte secreted factors were applied to skeletal muscle and liver ex vivo and insulin action and fatty acid metabolism were assessed. Syndecan-4 (SDC4), identified as an exercise-responsive hepatokine, was overexpressed in the livers of mice using adeno-associated virus. Whole-body energy homeostasis was assessed by indirect calorimetry and skeletal muscle and liver metabolism was assessed using radiometric techniques. RESULTS: Proteomics analysis detected 2657 intracellular and 1593 secreted proteins from mouse hepatocytes. Exercise training remodelled the hepatocyte proteome, with differences in 137 intracellular and 35 secreted proteins. Bioinformatic analysis of hepatocyte secreted proteins revealed enrichment of tumour suppressive proteins and proteins involved in lipid metabolism and mitochondrial function, and suppression of oncogenes and regulators of oxidative stress. Hepatocyte secreted factors from exercise trained mice improved insulin action in skeletal muscle and increased hepatic fatty acid oxidation. Hepatocyte-specific overexpression of SDC4 reduced hepatic steatosis, which was associated with reduced hepatic fatty acid uptake, and blunted pro-inflammatory and pro-fibrotic gene expression. Treating hepatocytes with recombinant ectodomain of SDC4 (secreted form) recapitulated these effects with reduced fatty acid uptake, lipid storage and lipid droplet accumulation. CONCLUSIONS: Remodelling of hepatokine secretion is an adaptation to regular exercise training that induces changes in metabolism in the liver and skeletal muscle. SDC4 is a novel exercise-responsive hepatokine that decreases fatty acid uptake and reduces steatosis in the liver. By understanding the proteomic changes in hepatocytes with exercise, these findings have potential for the discovery of new therapeutic targets for NAFLD.


Asunto(s)
Insulinas , Enfermedad del Hígado Graso no Alcohólico , Sindecano-4/metabolismo , Animales , Ácidos Grasos , Insulinas/metabolismo , Metabolismo de los Lípidos/fisiología , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteómica
7.
Nat Commun ; 13(1): 1259, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273160

RESUMEN

Non-alcoholic steatohepatitis (NASH) and type 2 diabetes are closely linked, yet the pathophysiological mechanisms underpinning this bidirectional relationship remain unresolved. Using proteomic approaches, we interrogate hepatocyte protein secretion in two models of murine NASH to understand how liver-derived factors modulate lipid metabolism and insulin sensitivity in peripheral tissues. We reveal striking hepatokine remodelling that is associated with insulin resistance and maladaptive lipid metabolism, and identify arylsulfatase A (ARSA) as a hepatokine that is upregulated in NASH and type 2 diabetes. Mechanistically, hepatic ARSA reduces sulfatide content and increases lysophosphatidylcholine (LPC) accumulation within lipid rafts and suppresses LPC secretion from the liver, thereby lowering circulating LPC and lysophosphatidic acid (LPA) levels. Reduced LPA is linked to improvements in skeletal muscle insulin sensitivity and systemic glycemic control. Hepatic silencing of Arsa or inactivation of ARSA's enzymatic activity reverses these effects. Together, this study provides a unique resource describing global changes in hepatokine secretion in NASH, and identifies ARSA as a regulator of liver to muscle communication and as a potential therapeutic target for type 2 diabetes.


Asunto(s)
Cerebrósido Sulfatasa , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Cerebrósido Sulfatasa/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Control Glucémico , Hígado/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteómica
8.
Am J Physiol Endocrinol Metab ; 320(4): E835-E845, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33645252

RESUMEN

Glucose-dependent insulinotropic polypeptide (GIP) is best known as an incretin hormone that is secreted from K-cells of the proximal intestine, but evidence also implicates a role for GIP in regulating lipid metabolism and adiposity. It is well-established that GIP receptor knockout (GIPR KO) mice are resistant to diet-induced obesity; however, the factors mediating this effect remain unresolved. Accordingly, we aimed to elucidate the mechanisms leading to adiposity resistance in GIPR KO mice with a focus on whole-body energy balance and lipid metabolism in adipose tissues. Studies were conducted in age-matched male GIPR KO and wild-type (WT) mice fed a high-fat diet for 10 weeks. GIPR KO mice gained less body weight and fat mass compared to WT littermates, and this was associated with increased energy expenditure but no differences in food intake or fecal energy loss. Upon an oral lipid challenge, fatty acid storage in inguinal adipose tissue was significantly increased in GIPR KO compared with WT mice. This was not related to differential expression of lipoprotein lipase in adipose tissue. Adipose tissue lipolysis was increased in GIPR KO compared with WT mice, particularly following ß-adrenergic stimulation, and could explain why GIPR KO mice gain less adipose tissue despite increased rates of fatty acid storage in inguinal adipose tissue. Taken together, these results suggest that the GIPR is required for normal maintenance of body weight and adipose tissue mass by regulating energy expenditure and lipolysis.NEW & NOTEWORTHY GIPR KO mice fed a high-fat diet have reduced adiposity despite transporting more ingested lipids into adipose tissue. This can be partly explained by accelerated adipose tissue lipolysis and increased energy expenditure in GIPR KO mice. These new insights rationalize targeting the GIPR as part of a weight management strategy in obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/genética , Metabolismo de los Lípidos/genética , Obesidad/genética , Receptores de la Hormona Gastrointestinal/genética , Adiposidad/genética , Animales , Eliminación de Gen , Lipólisis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/etiología , Obesidad/metabolismo
9.
J Lipid Res ; 62: 100016, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33334871

RESUMEN

Perilipin 5 (PLIN5) is a lipid-droplet-associated protein that coordinates intracellular lipolysis in highly oxidative tissues and is thought to regulate lipid metabolism in response to phosphorylation by protein kinase A (PKA). We sought to identify PKA phosphorylation sites in PLIN5 and assess their functional relevance in cultured cells and the livers of mice. We detected phosphorylation on S155 and identified S155 as a functionally important site for lipid metabolism. Expression of phosphorylation-defective PLIN5 S155A in Plin5 null cells resulted in decreased rates of lipolysis and triglyceride-derived fatty acid oxidation. FLIM-FRET analysis of protein-protein interactions showed that PLIN5 S155 phosphorylation regulates PLIN5 interaction with adipose triglyceride lipase at the lipid droplet, but not with α-ß hydrolase domain-containing 5. Re-expression of PLIN5 S155A in the liver of Plin5 liver-specific null mice reduced lipolysis compared with wild-type PLIN5 re-expression, but was not associated with other changes in hepatic lipid metabolism. Furthermore, glycemic control was impaired in mice with expression of PLIN5 S155A compared with mice expressing PLIN5. Together, these studies demonstrate that PLIN5 S155 is required for PKA-mediated lipolysis and builds on the body of evidence demonstrating a critical role for PLIN5 in coordinating lipid and glucose metabolism.


Asunto(s)
Perilipina-5
10.
J Endocrinol ; 248(2): 167-179, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33289685

RESUMEN

Cathepsin S (CTSS) is a cysteine protease that regulates many physiological processes and is increased in obesity and type 2 diabetes. While previous studies show that deletion of CTSS improves glycaemic control through suppression of hepatic glucose output, little is known about the role of circulating CTSS in regulating glucose and energy metabolism. We assessed the effects of recombinant CTSS on metabolism in cultured hepatocytes, myotubes and adipocytes, and in mice following acute CTSS administration. CTSS improved glucose tolerance in lean mice and this coincided with increased plasma insulin. CTSS reduced G6pc and Pck1 mRNA expression and glucose output from hepatocytes but did not affect glucose metabolism in myotubes or adipocytes. CTSS did not affect insulin secretion from pancreatic ß-cells, rather CTSS stimulated glucagon-like peptide (GLP)-1 secretion from intestinal mucosal tissues. CTSS retained its positive effects on glycaemic control in mice injected with the GLP1 receptor antagonist Exendin (9-39) amide. The effects of CTSS on glycaemic control were not retained in high-fat-fed mice or db/db mice, despite the preservation of CTSS' inhibitory actions on hepatic glucose output in isolated primary hepatocytes. In conclusion, we unveil a role for CTSS in the regulation of glycaemic control via direct effects on hepatocytes, and that these effects on glycaemic control are abrogated in insulin resistant states.


Asunto(s)
Glucemia , Catepsinas/sangre , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Catepsinas/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Control Glucémico , Hígado/metabolismo , Ratones
11.
Am J Physiol Endocrinol Metab ; 319(3): E519-E528, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32603261

RESUMEN

Regional distribution of adipose tissue is an important factor in conferring cardiometabolic risk and obesity-related morbidity. We tested the hypothesis that human visceral adipose tissue (VAT) impairs glucose homeostasis, whereas subcutaneous glutealfemoral adipose tissue (GFAT) protects against the development of impaired glucose homeostasis in mice. VAT and GFAT were collected from patients undergoing bariatric surgery and grafted onto the epididymal adipose tissue of weight- and age-matched severe, combined immunodeficient mice. SHAM mice underwent surgery without transplant of tissue. Mice were fed a high-fat diet after xenograft. Energy homeostasis, glucose metabolism, and insulin sensitivity were assessed 6 wk later. Xenograft of human adipose tissues was successful, as determined by histology, immunohistochemical evaluation of collagen deposition and angiogenesis, and maintenance of lipolytic function. Adipose tissue transplant did not affect energy expenditure, food intake, whole body substrate partitioning, or plasma free fatty acid, triglyceride, and insulin levels. Fasting blood glucose was significantly reduced in GFAT and VAT compared with SHAM, whereas glucose tolerance was improved only in mice transplanted with VAT compared with SHAM mice. This improvement was not associated with differences in whole body insulin sensitivity or plasma insulin between groups. Together, these data suggest that VAT improves glycemic control and GFAT does not protect against the development of high-fat diet-induced glucose intolerance. Hence, the intrinsic properties of VAT and GFAT do not necessarily explain the postulated negative and positive effects of these adipose tissue depots on metabolic health.


Asunto(s)
Tejido Adiposo/trasplante , Glucemia/metabolismo , Control Glucémico , Obesidad/sangre , Tejido Adiposo/fisiología , Adulto , Animales , Composición Corporal , Colágeno/metabolismo , Dieta Alta en Grasa , Metabolismo Energético , Femenino , Homeostasis , Humanos , Resistencia a la Insulina , Grasa Intraabdominal/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Persona de Mediana Edad , Neovascularización Fisiológica , Grasa Subcutánea/metabolismo
12.
Curr Diab Rep ; 20(6): 20, 2020 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-32306181

RESUMEN

PURPOSE OF REVIEW: Impairments in mitochondrial function in patients with insulin resistance and type 2 diabetes have been disputed for decades. This review aims to briefly summarize the current knowledge on mitochondrial dysfunction in metabolic tissues and to particularly focus on addressing a new perspective of mitochondrial dysfunction, the altered capacity of mitochondria to communicate with other organelles within insulin-resistant tissues. RECENT FINDINGS: Organelle interactions are temporally and spatially formed connections essential for normal cell function. Recent studies have shown that mitochondria interact with various cellular organelles, such as the endoplasmic reticulum, lysosomes and lipid droplets, forming inter-organelle junctions. We will discuss the current knowledge on alterations in these mitochondria-organelle interactions in insulin resistance and diabetes, with a focus on changes in mitochondria-lipid droplet communication as a major player in ectopic lipid accumulation, lipotoxicity and insulin resistance.


Asunto(s)
Comunicación Celular/fisiología , Diabetes Mellitus Tipo 2/fisiopatología , Resistencia a la Insulina/fisiología , Mitocondrias/fisiología , Enfermedades Mitocondriales/fisiopatología , Orgánulos/fisiología , Membrana Celular/metabolismo , Membrana Celular/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Aparato de Golgi/metabolismo , Aparato de Golgi/fisiología , Humanos , Gotas Lipídicas/metabolismo , Gotas Lipídicas/fisiología , Lisosomas/metabolismo , Lisosomas/fisiología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Orgánulos/metabolismo , Sobrepeso/metabolismo , Sobrepeso/fisiopatología , Peroxisomas/metabolismo , Peroxisomas/fisiología
13.
J Lipid Res ; 60(8): 1350-1364, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31203232

RESUMEN

Defects in the gene coding for dysferlin, a membrane-associated protein, affect many tissues, including skeletal muscles, with a resultant myopathy called dysferlinopathy. Dysferlinopathy manifests postgrowth with a progressive loss of skeletal muscle function, early intramyocellular lipid accumulation, and a striking later replacement of selective muscles by adipocytes. To better understand the changes underpinning this disease, we assessed whole-body energy homeostasis, skeletal muscle fatty acid metabolism, lipolysis in adipose tissue, and the skeletal muscle lipidome using young adult dysferlin-deficient male BLAJ mice and age-matched C57Bl/6J WT mice. BLAJ mice had increased lean mass and reduced fat mass associated with increased physical activity and increased adipose tissue lipolysis. Skeletal muscle fatty acid metabolism was remodeled in BLAJ mice, characterized by a partitioning of fatty acids toward storage rather than oxidation. Lipidomic analysis identified marked changes in almost all lipid classes examined in the skeletal muscle of BLAJ mice, including sphingolipids, phospholipids, cholesterol, and most glycerolipids but, surprisingly, not triacylglycerol. These observations indicate that an early manifestation of dysferlin deficiency is the reprogramming of skeletal muscle and adipose tissue lipid metabolism, which is likely to contribute to the progressive adverse histopathology in dysferlinopathies.


Asunto(s)
Tejido Adiposo/metabolismo , Disferlina/deficiencia , Lipólisis , Músculo Esquelético/metabolismo , Animales , Disferlina/metabolismo , Lipidómica , Ratones , Ratones Mutantes
14.
Diabetes ; 68(3): 543-555, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30617219

RESUMEN

Defects in hepatic lipid metabolism cause nonalcoholic fatty liver disease and insulin resistance, and these pathologies are closely linked. Regulation of lipid droplet metabolism is central to the control of intracellular fatty acid fluxes, and perilipin 5 (PLIN5) is important in this process. We examined the role of PLIN5 on hepatic lipid metabolism and systemic glycemic control using liver-specific Plin5-deficient mice (Plin5LKO ). Hepatocytes isolated from Plin5LKO mice exhibited marked changes in lipid metabolism characterized by decreased fatty acid uptake and storage, decreased fatty acid oxidation that was associated with reduced contact between lipid droplets and mitochondria, and reduced triglyceride secretion. With consumption of a high-fat diet, Plin5LKO mice accumulated intrahepatic triglyceride, without significant changes in inflammation, ceramide or diglyceride contents, endoplasmic reticulum stress, or autophagy. Instead, livers of Plin5LKO mice exhibited activation of c-Jun N-terminal kinase, impaired insulin signal transduction, and insulin resistance, which impaired systemic insulin action and glycemic control. Re-expression of Plin5 in the livers of Plin5LKO mice reversed these effects. Together, we show that Plin5 is an important modulator of intrahepatic lipid metabolism and suggest that the increased Plin5 expression that occurs with overnutrition may play an important role in preventing hepatic insulin resistance.


Asunto(s)
Hepatocitos/metabolismo , Hígado/metabolismo , Perilipina-5/metabolismo , Animales , Composición Corporal/genética , Composición Corporal/fisiología , Células Cultivadas , Immunoblotting , Inmunohistoquímica , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Ratones Noqueados , Oxidación-Reducción , Perilipina-5/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...