Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38328254

RESUMEN

Here, we describe a novel pan-RAS inhibitor, ADT-007, that potently inhibited the growth of RAS mutant cancer cells irrespective of the RAS mutation or isozyme. RAS WT cancer cells with activated RAS from upstream mutations were equally sensitive. Conversely, cells from normal tissues or RAS WT cancer cells harboring downstream BRAF mutations were insensitive. Insensitivity to ADT-007 was attributed to low activated RAS levels and metabolic deactivation by UDP-glucuronosyltransferases expressed in normal cells but repressed in RAS mutant cancer cells. Cellular, biochemical, and biophysical experiments show ADT-007 binds nucleotide-free RAS to block GTP activation of RAS and MAPK/AKT signaling. Local administration of ADT-007 strongly inhibited tumor growth in syngeneic immune-competent and xenogeneic immune-deficient mouse models of colorectal and pancreatic cancer while activating innate and adaptive immunity in the tumor immune microenvironment. Oral administration of ADT-007 prodrug inhibited tumor growth, supporting further development of this novel class of pan-RAS inhibitors for treating RAS-driven cancers. SIGNIFICANCE: ADT-007 is a 1 st -in-class pan-RAS inhibitor with ultra-high potency and unique selectivity for cancer cells with mutant or activated RAS capable of circumventing resistance and activating antitumor immunity. Further development of ADT-007 analogs or prodrugs with oral bioavailability as a generalizable monotherapy or combined with immunotherapy is warranted.

2.
Cancers (Basel) ; 15(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36765604

RESUMEN

The nonsteroidal anti-inflammatory drug (NSAID) sulindac demonstrates attractive anticancer activity, but the toxicity resulting from cyclooxygenase (COX) inhibition and the suppression of physiologically important prostaglandins precludes its long-term, high dose use in the clinic for cancer prevention or treatment. While inflammation is a known tumorigenic driver, evidence suggests that sulindac's antineoplastic activity is partially or fully independent of its COX inhibitory activity. One COX-independent target proposed for sulindac is cyclic guanosine monophosphate phosphodiesterase (cGMP PDE) isozymes. Sulindac metabolites, i.e., sulfide and sulfone, inhibit cGMP PDE enzymatic activity at concentrations comparable with those associated with cancer cell growth inhibitory activity. Additionally, the cGMP PDE isozymes PDE5 and PDE10 are overexpressed during the early stages of carcinogenesis and appear essential for cancer cell proliferation and survival based on gene silencing experiments. Here, we describe a novel amide derivative of sulindac, sulindac sulfide amide (SSA), which was rationally designed to eliminate COX-inhibitory activity while enhancing cGMP PDE inhibitory activity. SSA was 68-fold and 10-fold less potent than sulindac sulfide (SS) in inhibiting COX-1 and COX-2, respectively, but 10-fold more potent in inhibiting growth and inducing apoptosis in breast cancer cells. The pro-apoptotic activity of SSA was associated with inhibition of cGMP PDE activity, elevation of intracellular cGMP levels, and activation of cGMP-dependent protein kinase (PKG) signaling, as well as the inhibition of ß-catenin/Tcf transcriptional activity. SSA displayed promising in vivo anticancer activity, resulting in a 57% reduction in the incidence and a 62% reduction in the multiplicity of tumors in the N-methyl-N-nitrosourea (MNU)-induced model of breast carcinogenesis. These findings provide strong evidence for cGMP/PKG signaling as a target for breast cancer prevention or treatment and the COX-independent anticancer properties of sulindac. Furthermore, this study validates the approach of optimizing off-target effects by reducing the COX-inhibitory activity of sulindac for future targeted drug discovery efforts to enhance both safety and efficacy.

3.
J Ovarian Res ; 15(1): 120, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36324187

RESUMEN

A leading theory for ovarian carcinogenesis proposes that inflammation associated with incessant ovulation is a driver of oncogenesis. Consistent with this theory, nonsteroidal anti-inflammatory drugs (NSAIDs) exert promising chemopreventive activity for ovarian cancer. Unfortunately, toxicity is associated with long-term use of NSAIDs due to their cyclooxygenase (COX) inhibitory activity. Previous studies suggest the antineoplastic activity of NSAIDs is COX independent, and rather may be exerted through phosphodiesterase (PDE) inhibition. PDEs represent a unique chemopreventive target for ovarian cancer given that ovulation is regulated by cyclic nucleotide signaling. Here we evaluate PDE10A as a novel therapeutic target for ovarian cancer. Analysis of The Cancer Genome Atlas (TCGA) ovarian tumors revealed PDE10A overexpression was associated with significantly worse overall survival for patients. PDE10A expression also positively correlated with the upregulation of oncogenic and inflammatory signaling pathways. Using small molecule inhibitors, Pf-2545920 and a novel NSAID-derived PDE10A inhibitor, MCI-030, we show that PDE10A inhibition leads to decreased ovarian cancer cell growth and induces cell cycle arrest and apoptosis. We demonstrate these pro-apoptotic properties occur through PKA and PKG signaling by using specific inhibitors to block their activity. PDE10A genetic knockout in ovarian cancer cells through CRISP/Cas9 editing lead to decreased cell proliferation, colony formation, migration and invasion, and in vivo tumor growth. We also demonstrate that PDE10A inhibition leads to decreased Wnt-induced ß-catenin nuclear translocation, as well as decreased EGF-mediated activation of RAS/MAPK and AKT pathways in ovarian cancer cells. These findings implicate PDE10A as novel target for ovarian cancer chemoprevention and treatment.


Asunto(s)
Neoplasias Ováricas , beta Catenina , Femenino , Humanos , Antiinflamatorios no Esteroideos/farmacología , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas ras/metabolismo
4.
Adv Cancer Res ; 153: 131-168, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35101229

RESUMEN

Mutations in the three RAS oncogenes are present in approximately 30% of all human cancers that drive tumor growth and metastasis by aberrant activation of RAS-mediated signaling. Despite the well-established role of RAS in tumorigenesis, past efforts to develop small molecule inhibitors have failed for various reasons leading many to consider RAS as "undruggable." Advances over the past decade with KRAS(G12C) mutation-specific inhibitors have culminated in the first FDA-approved RAS drug, sotorasib. However, the patient population that stands to benefit from KRAS(G12C) inhibitors is inherently limited to those patients harboring KRAS(G12C) mutations. Additionally, both intrinsic and acquired mechanisms of resistance have been reported that indicate allele-specificity may afford disadvantages. For example, the compensatory activation of uninhibited wild-type (WT) NRAS and HRAS isozymes can rescue cancer cells harboring KRAS(G12C) mutations from allele-specific inhibition or the occurrence of other mutations in KRAS. It is therefore prudent to consider alternative drug discovery strategies that may overcome these potential limitations. One such approach is pan-RAS inhibition, whereby all RAS isozymes co-expressed in the tumor cell population are targeted by a single inhibitor to block constitutively activated RAS regardless of the underlying mutation. This chapter provides a review of past and ongoing strategies to develop pan-RAS inhibitors in detail and seeks to outline the trajectory of this promising strategy of RAS inhibition.


Asunto(s)
Antineoplásicos , Neoplasias , Proteínas ras , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Isoenzimas , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/genética , Proteínas ras/antagonistas & inhibidores , Proteínas ras/metabolismo
5.
J Exp Clin Cancer Res ; 41(1): 27, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35045886

RESUMEN

The RAS oncogene is both the most frequently mutated oncogene in human cancer and the first confirmed human oncogene to be discovered in 1982. After decades of research, in 2013, the Shokat lab achieved a seminal breakthrough by showing that the activated KRAS isozyme caused by the G12C mutation in the KRAS gene can be directly inhibited via a newly unearthed switch II pocket. Building upon this groundbreaking discovery, sotorasib (AMG510) obtained approval by the United States Food and Drug Administration in 2021 to become the first therapy to directly target the KRAS oncoprotein in any KRAS-mutant cancers, particularly those harboring the KRASG12C mutation. Adagrasib (MRTX849) and other direct KRASG12C inhibitors are currently being investigated in multiple clinical trials. In this review, we delve into the path leading to the development of this novel KRAS inhibitor, starting with the discovery, structure, and function of the RAS family of oncoproteins. We then examine the clinical relevance of KRAS, especially the KRASG12C mutation in human cancer, by providing an in-depth analysis of its cancer epidemiology. Finally, we review the preclinical evidence that supported the initial development of the direct KRASG12C inhibitors and summarize the ongoing clinical trials of all direct KRASG12C inhibitors.


Asunto(s)
Desarrollo de Medicamentos/métodos , Inmunoterapia/métodos , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Humanos
6.
Cancer Prev Res (Phila) ; 14(11): 995-1008, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34584001

RESUMEN

Previous studies have reported that phosphodiesterase 10A (PDE10) is overexpressed in colon epithelium during early stages of colon tumorigenesis and essential for colon cancer cell growth. Here we describe a novel non-COX inhibitory derivative of the anti-inflammatory drug, sulindac, with selective PDE10 inhibitory activity, ADT 061. ADT 061 potently inhibited the growth of colon cancer cells expressing high levels of PDE10, but not normal colonocytes that do not express PDE10. The concentration range by which ADT 061 inhibited colon cancer cell growth was identical to concentrations that inhibit recombinant PDE10. ADT 061 inhibited PDE10 by a competitive mechanism and did not affect the activity of other PDE isozymes at concentrations that inhibit colon cancer cell growth. Treatment of colon cancer cells with ADT 061 activated cGMP/PKG signaling, induced phosphorylation of oncogenic ß-catenin, inhibited Wnt-induced nuclear translocation of ß-catenin, and suppressed TCF/LEF transcription at concentrations that inhibit cancer cell growth. Oral administration of ADT 061 resulted in high concentrations in the colon mucosa and significantly suppressed the formation of colon adenomas in the Apc+/min-FCCC mouse model of colorectal cancer without discernable toxicity. These results support the development of ADT 061 for the treatment or prevention of adenomas in individuals at risk of developing colorectal cancer. PREVENTION RELEVANCE: PDE10 is overexpressed in colon tumors whereby inhibition activates cGMP/PKG signaling and suppresses Wnt/ß-catenin transcription to selectively induce apoptosis of colon cancer cells. ADT 061 is a novel PDE10 inhibitor that shows promising cancer chemopreventive activity and tolerance in a mouse model of colon cancer.


Asunto(s)
Neoplasias del Colon , beta Catenina , Animales , Carcinogénesis , Colon/patología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/prevención & control , Ratones , Inhibidores de Fosfodiesterasa/farmacología , Sulindac/farmacología
7.
Bioorg Chem ; 114: 105143, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34328854

RESUMEN

A series of 2-arylthiazolidine-4-carboxylic acid amide derivatives were synthesized and their cytotoxic activity against three cancer cell lines (PC-3, SKOV3 and MDA-MB231) was evaluated. Various structural modifications were tried including modifications of the length of the amide chain and modifications of the 2-aryl part using disubstituted phenyl and thiophene derivatives. The structure activity relationship was evaluated based on the in vitro biological evaluation against the above mentioned three cancer cell lines. The most selective compounds towards cancer cells were further evaluated against DLD-1, NCI-H520, Du145, MCF-7 and NCI-N87 cancer cells. The dodecyl amide having the 4-bromothienyl as the 2-aryl, compound 2e, exhibited the highest selectivity for cancer cells vs non-tumor cells. Mechanistic studies of the anticancer effect of compound 2e in prostate cancer PC-3 and colorectal cancer DLD-1 cells revealed that 2e could prevent the cell cycle in the G0/G1 phase by up-regulating the expression of p21 and reducing the expression of CDK2 and cyclin E. It increased the pro-apoptotic protein Bax and cleaved caspase 3, and down-regulated the expression of anti-apoptotic protein Bcl-2 to induce apoptosis. In addition, 2e also downregulated AKT, N-cadherin, and vimentin proteins expression giving indication that 2e inhibit the PI3K/AKT pathway to regulate cell cycle arrest and induce apoptosis, and can regulate the expression of epithelial-mesenchymal transition-related proteins.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Tiazolidinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad Cuantitativa , Tiazolidinas/síntesis química , Tiazolidinas/química
8.
J Med Chem ; 64(8): 4462-4477, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33793216

RESUMEN

A ligand-based approach involving systematic modifications of a trisubstituted pyrazoline scaffold derived from the COX2 inhibitor, celecoxib, was used to develop novel PDE5 inhibitors. Novel pyrazolines were identified with potent PDE5 inhibitory activity lacking COX2 inhibitory activity. Compound d12 was the most potent with an IC50 of 1 nM, which was three times more potent than sildenafil and more selective with a selectivity index of >10,000-fold against all other PDE isozymes. Sildenafil inhibited the full-length and catalytic fragment of PDE5, while compound d12 only inhibited the full-length enzyme, suggesting a mechanism of enzyme inhibition distinct from sildenafil. The PDE5 inhibitory activity of compound d12 was confirmed in cells using a cGMP biosensor assay. Oral administration of compound d12 achieved plasma levels >1000-fold higher than IC50 values and showed no discernable toxicity after repeated dosing. These results reveal a novel strategy to inhibit PDE5 with unprecedented potency and isozyme selectivity.


Asunto(s)
Celecoxib/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/química , Inhibidores de Fosfodiesterasa 5/química , Pirazoles/química , Animales , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Celecoxib/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Diseño de Fármacos , Femenino , Semivida , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microsomas Hepáticos/metabolismo , Inhibidores de Fosfodiesterasa 5/metabolismo , Unión Proteica , Pirazoles/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Estereoisomerismo , Relación Estructura-Actividad
9.
Bioorg Chem ; 104: 104322, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33142429

RESUMEN

Celecoxib, is a selective cyclooxygenase-2 (COX2) inhibitor with a 1,5-diaryl pyrazole scaffold. Celecoxib has a better safety profile compared to other COX2 inhibitors having side effects of systemic hypertension and thromboembolic complications. This may be partly attributed to an off-target activity involving phosphodiesterase 5 (PDE5) inhibition and the potentiation of NO/cGMP signalling allowing coronary vasodilation and aortic relaxation. Inspired by the structure of celecoxib, we synthesized a chemically diverse series of compounds containing a 1,3,5-trisubstituted pyrazoline scaffold to improve PDE5 inhibitory potency, while eliminating COX2 inhibitory activity. SAR studies for PDE5 inhibition revealed an essential role for a carboxylic acid functionality at the 1-phenyl and the importance of the non-planar pyrazoline core over the planar pyrazole with the 5-phenyl moiety tolerating a range of substituents. These modifications led to new PDE5 inhibitors with approximately 20-fold improved potency to inhibit PDE5 and no COX-2 inhibitory activity compared with celecoxib. PDE isozyme profiling of compound 11 revealed a favorable selectivity profile. These results suggest that trisubstituted pyrazolines provide a promising scaffold for further chemical optimization to identify novel PDE5 inhibitors with potential for less side effects compared with available PDE5 inhibitors used for the treatment of penile erectile dysfunction and pulmonary hypertension.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Descubrimiento de Drogas , Inhibidores de Fosfodiesterasa 5/farmacología , Pirazoles/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de Fosfodiesterasa 5/síntesis química , Inhibidores de Fosfodiesterasa 5/química , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad
10.
MedComm (2020) ; 1(2): 121-128, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33073260

RESUMEN

Approximately 30% of human cancers harbor a gain-in-function mutation in the RAS gene, resulting in constitutive activation of the RAS protein to stimulate downstream signaling, including the RAS-mitogen activated protein kinase pathway that drives cancer cells to proliferate and metastasize. RAS-driven oncogenesis also promotes immune evasion by increasing the expression of programmed cell death ligand-1, reducing the expression of major histocompatibility complex molecules that present antigens to T-lymphocytes and altering the expression of cytokines that promote the differentiation and accumulation of immune suppressive cell types such as myeloid-derived suppressor cells, regulatory T-cells, and cancer-associated fibroblasts. Together, these changes lead to an immune suppressive tumor microenvironment that impedes T-cell activation and infiltration and promotes the outgrowth and metastasis of tumor cells. As a result, despite the growing success of checkpoint immunotherapy, many patients with RAS-driven tumors experience resistance to therapy and poor clinical outcomes. Therefore, RAS inhibitors in development have the potential to weaken cancer cell immune evasion and enhance the antitumor immune response to improve survival of patients with RAS-driven cancers. This review highlights the potential of RAS inhibitors to enhance or broaden the anti-cancer activity of currently available checkpoint immunotherapy.

11.
Cancers (Basel) ; 12(8)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32718079

RESUMEN

Expression of ATP-binding cassette (ABC) transporters has long been implicated in cancer chemotherapy resistance. Increased expression of the ABCC subfamily transporters has been reported in prostate cancer, especially in androgen-resistant cases. ABCC transporters are known to efflux drugs but, recently, we have demonstrated that they can also have a more direct role in cancer progression. The pharmacological potential of targeting ABCC1, however, remained to be assessed. In this study, we investigated whether the blockade of ABCC1 affects prostate cancer cell proliferation using both in vitro and in vivo models. Our data demonstrate that pharmacological inhibition of ABCC1 reduced prostate cancer cell growth in vitro and potentiated the effects of Docetaxel in vitro and in mouse models of prostate cancer in vivo. Collectively, these data identify ABCC1 as a novel and promising target in prostate cancer therapy.

12.
Drug Discov Today ; 25(8): 1521-1527, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32562844

RESUMEN

Although numerous reports conclude that nonsteroidal anti-inflammatory drugs (NSAIDs) have anticancer activity, this common drug class is not recommended for long-term use because of potentially fatal toxicities from cyclooxygenase (COX) inhibition. Studies suggest the mechanism responsible for the anticancer activity of the NSAID sulindac is unrelated to COX inhibition but instead involves an off-target, phosphodiesterase (PDE). Thus, it might be feasible develop safer and more efficacious drugs for cancer indications by targeting PDE5 and PDE10, which are overexpressed in various tumors and essential for cancer cell growth. In this review, we describe the rationale for using the sulindac scaffold to design-out COX inhibitory activity, while improving potency and selectivity to inhibit PDE5 and PDE10 that activate cGMP/PKG signaling to suppress Wnt/ß-catenin transcription, cancer cell growth, and tumor immunity.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Inhibidores de Fosfodiesterasa/farmacología , Sulindac/farmacología , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Antineoplásicos/uso terapéutico , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Inhibidores de Fosfodiesterasa/uso terapéutico , Transducción de Señal/efectos de los fármacos , Sulindac/uso terapéutico , Transcripción Genética/efectos de los fármacos , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
13.
Bioorg Chem ; 98: 103742, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32199305

RESUMEN

Herein we present the synthesis and characterization of a novel chemical series of tadalafil analogues that display different pharmacological profiles. Compounds that have the 6R, 12aR configuration and terminal carboxylic acid group at the side chain arising from the piperazinedione nitrogen were potent PDE5 inhibitors, with compound 11 having almost equal potency to tadalafil and superior selectivity over PDE11, the most common off-target for tadalafil. Modifying the stereochemistry into 6S, 12aS configuration and adopting the hydroxamic acid moiety as a terminal group gave rise to compounds that only inhibited HDAC. Dual PDE5/HDAC inhibition could be achieved with compounds having 6R, 12aR configuration and hydroxamic acid moiety as a terminal group. The anticancer activity of the synthesized compounds was evaluated against a diverse number of cell lines of different origin. The compounds elicited anticancer activity against cell lines belonging to lymphoproliferative cancer as well as solid tumors. Despite the previous reports suggesting anticancer activity of PDE5 inhibitors, the growth inhibitory activity of the compounds seemed to be solely dependent on HDAC inhibition. Compound 26 (pan HDAC IC50 = 14 nM, PDE5 IC50 = 46 nM) displayed the most potent anticancer activity in the present series and was shown to induce apoptosis in Molt-4 cells. HDAC isoform selectivity testing for compound 26 showed that it is more selective for HDAC6 and 8 over HDAC1 by more than 20-fold.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Desarrollo de Medicamentos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Inhibidores de Fosfodiesterasa 5/farmacología , Tadalafilo/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Fosfodiesterasa 5/síntesis química , Inhibidores de Fosfodiesterasa 5/química , Relación Estructura-Actividad , Tadalafilo/síntesis química , Tadalafilo/química
14.
Drug Des Devel Ther ; 14: 483-495, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32099332

RESUMEN

BACKGROUND: Cancer remains the leading cause of human morbidity universally. Hence, we sought to assess the in vitro antiproliferative activity of new isatin-based conjugates (5a-s) against three human cancer cell lines. METHODS: The antiproliferative activities of compounds 5a-s were evaluated in vitro and their ADME (absorption, distribution, metabolism and excretion) was carried out using standard protocols. Subsequently, Western blot analysis was conducted to elucidate the potential antiproliferative mechanism of compounds 5a-s. RESULTS: The in vitro antiproliferative activities of compounds 5a-s against the tested cancer cell lines ranged from 20.3 to 95.9%. Compound 5m had an IC50 value of 1.17 µM; thus, its antiproliferative potency was approximately seven-fold greater than that of sunitinib (IC50 = 8.11 µM). In-depth pharmacological testing was conducted with compound 5m to gain insight into the potential antiproliferative mechanism of this class of compounds. Compound 5m caused an increase in the number of cells in the G1 phase, with a concomitant reduction of those in the G2/M and S phases. Additionally, compound 5m significantly and dose-dependently reduced the amount of phosphorylated retinoblastoma protein detected. Compound 5m enhanced expression of B cell translocation gene 1, cell cycle-associated proteins (cyclin B1, cyclin D1, and phosphorylated cyclin-dependent kinase 1), and a pro-apoptotic protein (Bcl-2-associated X protein gene), and activated caspase-3. ADME predictions exposed the oral liability of compounds 5a-s. CONCLUSION: Herein, we revealed the antiproliferative activity and ADME predictions of the newly-synthesized compounds 5a-s and provided a detailed insight into the pharmacological profile of compound 5m. Thus, compounds 5a-s can potentially be exploited as new antiproliferative lead compounds for cancer chemotherapeutic.


Asunto(s)
Antineoplásicos/farmacología , Indoles/farmacología , Isatina/farmacología , Células A549 , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indoles/química , Isatina/química , Estructura Molecular , Relación Estructura-Actividad
15.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31878223

RESUMEN

Oncogenic mutations in RAS genes result in the elevation of cellular active RAS protein levels and increased signal propagation through downstream pathways that drive tumor cell proliferation and survival. These gain-of-function mutations drive over 30% of all human cancers, presenting promising therapeutic potential for RAS inhibitors. However, many have deemed RAS "undruggable" after nearly 40 years of failed drug discovery campaigns aimed at identifying a RAS inhibitor with clinical activity. Here we review RAS nucleotide cycling and the opportunities that RAS biochemistry presents for developing novel RAS inhibitory compounds. Additionally, compounds that have been identified to inhibit RAS by exploiting various aspects of RAS biology and biochemistry will be covered. Our current understanding of the biochemical properties of RAS, along with reports of direct-binding inhibitors, both provide insight on viable strategies for the discovery of novel clinical candidates with RAS inhibitory activity.


Asunto(s)
Neoplasias/genética , Neoplasias/metabolismo , Proteínas ras/genética , Animales , Antineoplásicos/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
16.
Drug Des Devel Ther ; 13: 3069-3078, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695325

RESUMEN

BACKGROUND: Cancer is one of the most dreaded human diseases, that has become an ever-increasing health problem and is a prime cause of death globally. The potential antiproliferative activity of certain indole-isatin molecular hybrids 5a-w was evaluated in vitro against three human cancer cell lines. METHODS: Standard protocols were adopted to examine the antiproliferative potential and mechanisms of compounds 5a-w. Western blot analysis was carried out on compound 5o. RESULTS: Compounds 5a-w demonstrated in vitro antiproliferative activity in the range of 22.6-97.8%, with compounds 5o and 5w being the most active antiproliferative compounds   with IC50 values of 1.69 and 1.91 µM, which is fivefold and fourfold more potent than sunitinib (IC50=8.11 µM), respectively. Compound 5o was selected for in-depth pharmacological testing to understand its possible mechanism of antiproliferative activity. It caused a lengthening of the G1 phase and a reduction in the S and G2/M phases of the cell cycle and had an IC50 value of 10.4 µM with the resistant NCI-H69AR cancer cell line. Moreover, compound 5o significantly decreased the amount of phosphorylated Rb protein in a dose-dependent fashion, which was confirmed via Western blot analysis. CONCLUSION: The current investigation highlighted the potential antiproliferative activity of compounds 5a-w as well as the antiproliferative profile of compound 5o. These compounds can be harnessed as new lead antiproliferatives in the preclinical studies of cancer chemotherapy.


Asunto(s)
Antineoplásicos/administración & dosificación , Indoles/administración & dosificación , Isatina/administración & dosificación , Neoplasias/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Indoles/química , Indoles/farmacología , Concentración 50 Inhibidora , Isatina/química , Isatina/farmacología , Relación Estructura-Actividad , Sunitinib/farmacología
17.
J Exp Clin Cancer Res ; 38(1): 312, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31378204

RESUMEN

BACKGROUND: Pancreatic Ductal Adenocarcinoma (PDAC) is an aggressive and lethal disease, lacking effective therapeutic approaches. Available therapies only marginally prolong patient survival and are frequently coupled with severe adverse events. It is therefore pivotal to investigate novel and safe pharmacological approaches. We have recently identified the ABC transporter, ABCC3, whose expression is dependent on mutation of TP53, as a novel target in PDAC. ABCC3-mediated regulation of PDAC cell proliferation and tumour growth in vivo was demonstrated and was shown to be conferred by upregulation of STAT3 signalling and regulation of apoptosis. METHODS: To verify the potential of ABCC3 as a pharmacological target, a small molecule inhibitor of ABCC3, referred to here as MCI-715, was designed. In vitro assays were performed to assess the effects of ABCC3 inhibition on anchorage-dependent and anchorage-independent PDAC cell growth. The impact of ABCC3 inhibition on specific signalling pathways was verified by Western blotting. The potential of targeting ABCC3 with MCI-715 to counteract PDAC progression was additionally tested in several animal models of PDAC, including xenograft mouse models and transgenic mouse model of PDAC. RESULTS: Using both mouse models and human cell lines of PDAC, we show that the pharmacological inhibition of ABCC3 significantly decreased PDAC cell proliferation and clonal expansion in vitro and in vivo, remarkably slowing tumour growth in mice xenografts and patient-derived xenografts and increasing the survival rate in a transgenic mouse model. Furthermore, we show that stromal cells in pancreatic tumours, which actively participate in PDAC progression, are enriched for ABCC3, and that its inhibition may contribute to stroma reprogramming. CONCLUSIONS: Our results indicate that ABCC3 inhibition with MCI-715 demonstrated strong antitumor activity and is well tolerated, which leads us to conclude that ABCC3 inhibition is a novel and promising therapeutic strategy for a considerable cohort of patients with pancreatic cancer.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Animales , Apoptosis , Biomarcadores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Reprogramación Celular/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Ratones , Ratones Transgénicos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/mortalidad , Pronóstico , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Células del Estroma/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Arch Pharm (Weinheim) ; 352(8): e1900002, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31353608

RESUMEN

A series of 1,2,4-triazolo[1,5-a]pyrimidine derivatives was designed, synthesized, and screened for their phosphodiesterase (PDE 4B) inhibitory activity and bronchodilation ability. Compound 7e showed 41.80% PDE 4B inhibition at 10 µM. Eight compounds were screened for their bronchodilator activity, where compounds 7f and 7e elicited promising bronchodilator activity with EC50 values of 18.6 and 57.1 µM, respectively, compared to theophylline (EC50 = 425 µM). Molecular docking at the PDE 4B active site revealed a binding mode and docking scores comparable to those of a reference ligand, consistent with their PDE 4B inhibition activity.


Asunto(s)
Broncodilatadores/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Diseño de Fármacos , Músculo Liso/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/farmacología , Pirimidinas/farmacología , Tráquea/efectos de los fármacos , Triazoles/farmacología , Animales , Broncodilatadores/síntesis química , Broncodilatadores/química , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Simulación del Acoplamiento Molecular , Estructura Molecular , Contracción Muscular/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/síntesis química , Inhibidores de Fosfodiesterasa 4/química , Pirimidinas/síntesis química , Pirimidinas/química , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química
19.
J Enzyme Inhib Med Chem ; 33(1): 867-878, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29707975

RESUMEN

In connection with our research program on the development of novel indolin-2-one-based anticancer candidates, herein we report the design and synthesis of different series of hydrazonoindolin-2-ones 3a-e, 5a-e, 7a-c, and 10a-l. The synthesised derivatives were in vitro evaluated for their anti-proliferative activity towards lung A-549, colon HT-29, and breast ZR-75 human cancer cell lines. Compounds 5b, 5c, 7b, and 10e emerged as the most potent derivatives with average IC50 values of 4.37, 2.53, 2.14, and 4.66 µM, respectively, which are superior to Sunitinib (average IC50 = 8.11 µM). Furthermore, compounds 7b and 10e were evaluated for their effects on cell cycle progression and levels of phosphorylated retinoblastoma (Rb) protein in the A-549 cancer cell line. Moreover, 7b and 10e inhibited the cell growth of the multidrug-resistant lung cancer NCI-H69AR cell line with IC50 = 16 µM. In addition, the cytotoxic activities of 7b and 10e were assessed towards three non-tumorigenic cell lines (Intestine IEC-6, Breast MCF-10A, and Fibroblast Swiss-3t3) where both compounds displayed mean tumor selectivity index (1.6 and 1.8) higher than that of Sunitinib (1.4).


Asunto(s)
Antineoplásicos/farmacología , Indoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indoles/síntesis química , Indoles/química , Estructura Molecular , Relación Estructura-Actividad
20.
Oncotarget ; 8(41): 69264-69280, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-29050202

RESUMEN

Phosphodiesterase 10A (PDE10) is a cyclic nucleotide (e.g. cGMP) degrading enzyme highly expressed in the brain striatum where it plays an important role in dopaminergic neurotransmission, but has limited expression and no known physiological function outside the central nervous system. Here we report that PDE10 mRNA and protein levels are strongly elevated in human non-small cell lung cancer cells and lung tumors compared with normal human airway epithelial cells and lung tissue, respectively. Genetic silencing of PDE10 or inhibition by small molecules such as PQ10 was found to selectively inhibit the growth and colony formation of lung tumor cells. PQ10 treatment of lung tumor cells rapidly increased intracellular cGMP levels and activated cGMP-dependent protein kinase (PKG) at concentrations that inhibit lung tumor cell growth. PQ10 also increased the phosphorylation of ß-catenin and reduced its levels, which paralleled the suppression of cyclin D1 and survivin but preceded the activation of PARP and caspase cleavage. PQ10 also suppressed RAS-activated RAF/MAPK signaling within the same concentration range and treatment period as required for cGMP elevation and PKG activation. These results show that PDE10 is overexpressed during lung cancer development and essential for lung tumor cell growth in which inhibitors can selectively induce apoptosis by increasing intracellular cGMP levels and activating PKG to suppress oncogenic ß-catenin and MAPK signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...