Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226538

RESUMEN

The presence of antibiotics in natural water bodies is a growing problem regarding the occurrence of antibiotic resistance among various species. This is mainly caused by the excessive use of medical and veterinary antibiotics as well as the lack of effective treatment processes for eliminating residual antibiotics from wastewaters. In this study, we introduce a genetically engineered biomaterial as a solution for the effective degradation of one of the dominantly found antibiotics in natural water bodies. Our biomaterial harnesses laccase-type enzymes, which are known to attack specific types of antibiotics, i.e., fluoroquinolone-type synthetic antibiotics, and as a result degradation occurs. The engineered biomaterial is built using Escherichia coli biofilm protein CsgA as a scaffold, which is fused separately to two different laccase enzymes with the SpyTag-SpyCatcher peptide-protein duo. The designed biofilm materials were successful in degrading ciprofloxacin, as demonstrated with the data obtained from mass spectrometry analysis and cell viability assays.

2.
Biosens Bioelectron ; 264: 116644, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39137519

RESUMEN

In recent years, whole-cell biosensors (WCBs) have emerged as a potent approach for environmental monitoring and on-site analyte detection. These biosensors harness the biological apparatus of microorganisms to identify specific analytes, offering advantages in sensitivity, specificity, and real-time monitoring capabilities. A critical hurdle in biosensor development lies in ensuring the robust attachment of cells to surfaces, a crucial step for practical utility. In this study, we present a comprehensive approach to tackle this challenge via engineering Escherichia coli cells for immobilization on paper through the Curli biofilm pathway. Furthermore, incorporating a cellulose-binding peptide domain to the CsgA biofilm protein enhances cell adhesion to paper surfaces, consequently boosting biosensor efficacy. To demonstrate the versatility of this platform, we developed a WCB for copper, optimized to exhibit a discernible response, even with the naked eye. To confirm its suitability for practical field use, we characterized our copper sensor under various environmental conditions-temperature, salinity, and pH-to mimic real-world scenarios. The biosensor-equipped paper discs can be freeze-dried for deployment in on-site applications, providing a practical method for long-term storage without loss of sensitivity paper discs demonstrate sustained functionality and viability even after months of storage with 5 µM limit of detection for copper with visible-to-naked-eye signal levels. Biofilm-mediated surface attachment and analyte sensing can be independently engineered, allowing for flexible utilization of this platform as required. With the implementation of copper sensing as a proof-of-concept study, we underscore the potential of WCBs as a promising avenue for the on-site detection of a multitude of analytes.


Asunto(s)
Biopelículas , Técnicas Biosensibles , Cobre , Proteínas de Escherichia coli , Escherichia coli , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Escherichia coli/aislamiento & purificación , Cobre/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Ingeniería Genética , Papel , Monitoreo del Ambiente/instrumentación
3.
Adv Mater Interfaces ; : 2201126, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36248312

RESUMEN

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously infecting people all around the world since its outbreak in 2019. Studies for numerous infection detection strategies are continuing. The sensitivity of detection methods is crucial to separate people with mild infections from people who are asymptomatic. In this sense, a strategy that would help to capture and isolate the SARS-CoV-2 virus prior to tests can be effective and beneficial. To this extent, genetically engineered biomaterials grounding from the biofilm protein of Escherichia coli are beneficial due to their robustness and adaptability to various application areas. Through functionalizing the E. coli biofilm protein, diverse properties can be attained such as enzyme display, nanoparticle production, and medical implant structures. Here, E. coli species are employed to express major curli protein CsgA and Griffithsin (GRFT) as fusion proteins, through a complex formation using SpyTag and SpyCatcher domains. In this study, a complex system with a CsgA scaffold harboring the affinity of GRFT against Spike protein to capture and isolate SARS-CoV-2 virus is successfully developed. It is shown that the hybrid recombinant protein can dramatically increase the sensitivity of currently available lateral flow assays for Sars-CoV-2 diagnostics.

4.
Small ; 18(26): e2200537, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35567331

RESUMEN

The demand for highly efficient cancer diagnostic tools increases alongside the high cancer incidence nowadays. Moreover, there is an imperative need for novel cancer treatment therapies that lack the side effects of conventional treatment options. Developments in this aspect employ magnetic nanoparticles (MNPs) for biomedical applications due to their stability, biocompatibility, and magnetic properties. Certain organisms, including many bacteria, can synthesize magnetic nanocrystals, which help their spatial orientation and survival by sensing the earth's geomagnetic field. This work aims to convert Escherichia coli to accumulate magnetite, which can further be coupled with drug delivery modules. The authors design magnetite accumulating bacterial machines using genetic circuitries hiring Mms6 with iron-binding activity and essential in magnetite crystal formation. The work demonstrates that the combinatorial effect of Mms6 with ferroxidase, iron transporter protein, and material binding peptide enhances the paramagnetic behavior of the cells in magnetic resonance imaging (MRI) measurements. Cellular machines are also engineered to display Mms6 peptide on the cell surface via an autotransporter protein that shows augmented MRI performance. The findings are promising for endowing a probiotic bacterium, able to accumulate magnetite intracellularly or extracellularly, serving as a theranostics agent for cancer diagnostics via MRI scanning and hyperthermia treatment.


Asunto(s)
Medios de Contraste , Nanopartículas de Magnetita , Bacterias/metabolismo , Medios de Contraste/química , Óxido Ferrosoférrico , Hierro/metabolismo , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Péptidos
5.
Heliyon ; 6(9): e05116, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33015402

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently a global pandemic with unprecedented public health, economic and social impact. The development of effective mitigation strategies, therapeutics and vaccines relies on detailed genomic and biological characterization of the regional viruses. This study was carried out to isolate SARS-CoV-2 viruses circulating in Anatolia, and to investigate virus propagation in frequently-used cells and experimental animals. We obtained two SARS-CoV-2 viruses from nasopharngeal swabs of confirmed cases in Vero E6 cells, visualized the virions using atomic force and scanning electron microscopy and determined size distribution of the particles. Viral cytopathic effects on Vero E6 cells were initially observed at 72 h post-inoculation and reached 90% of the cells on the 5th day. The isolates displayed with similar infectivity titers, time course and infectious progeny yields. Genome sequencing revealed the viruses to be well-conserved, with less than 1% diversity compared to the prototype virus. The analysis of the viral genomes, along with the available 62 complete genomes from Anatolia, showed limited diversity (up to 0.2% on deduced amino acids) and no evidence of recombination. The most prominent sequence variation was observed on the spike protein, resulting in the substitution D614G, with a prevalence of 56.2%. The isolates produced non-fatal infection in the transgenic type I interferon knockout (IFNAR-/-) mice, with varying neutralizing antibody titers. Hyperemia, regional consolidation and subpleural air accumulation was observed on necropsy, with similar histopathological and immunohistochemistry findings in the lungs, heart, stomach, intestines, liver, spleen and kidneys. Peak viral loads were detected in the lungs, with virus RNA present in the kidneys, jejunum, liver, spleen and heart. In conclusion, we characterized two local isolates, investigated in vitro growth dynamics in Vero E6 cells and identified IFNAR-/- mice as a potential animal model for SARS-CoV-2 experiments.

6.
ACS Sens ; 3(1): 13-26, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29168381

RESUMEN

An increasing interest in building novel biological devices with designed cellular functionalities has triggered the search of innovative tools for biocomputation. Utilizing the tools of synthetic biology, numerous genetic circuits have been implemented such as engineered logic operation in analog and digital circuits. Whole cell biosensors are widely used biological devices that employ several biocomputation tools to program cells for desired functions. Up to the present date, a wide range of whole-cell biosensors have been designed and implemented for disease theranostics, biomedical applications, and environmental monitoring. In this review, we investigated the recent developments in biocomputation tools such as analog, digital, and mix circuits, logic gates, switches, and state machines. Additionally, we stated the novel applications of biological devices with computing functionalities for diagnosis and therapy of various diseases such as infections, cancer, or metabolic diseases, as well as the detection of environmental pollutants such as heavy metals or organic toxic compounds. Current whole-cell biosensors are innovative alternatives to classical biosensors; however, there is still a need to advance decision making capabilities by developing novel biocomputing devices.


Asunto(s)
Técnicas Biosensibles/instrumentación , Diseño de Equipo , Redes Reguladoras de Genes , Biología Computacional/métodos , Humanos , Biología Sintética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...