Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Transl Stroke Res ; 14(4): 572-588, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35821378

RESUMEN

The mechanisms of cognitive decline after intraventricular hemorrhage (IVH) in some patients continue to be poorly understood. Multiple rodent models of intraventricular or subarachnoid hemorrhage have only shown mild or even no cognitive impairment on subsequent behavioral testing. In this study, we show that intraventricular hemorrhage only leads to a significant spatial memory deficit in the Morris water maze if it occurs in the setting of an elevated intracranial pressure (ICP). Histopathological analysis of these IVH + ICP animals did not show evidence of neuronal degeneration in the hippocampal formation after 2 weeks but instead showed significant microglial activation measured by lacunarity and fractal dimensions. RNA sequencing of the hippocampus showed distinct enrichment of genes in the IVH + ICP group but not in IVH alone having activated microglial signaling pathways. The most significantly activated signaling pathway was the classical complement pathway, which is used by microglia to remove synapses, followed by activation of the Fc receptor and DAP12 pathways. Thus, our study lays the groundwork for identifying signaling pathways that could be targeted to ameliorate behavioral deficits after IVH.


Asunto(s)
Hipertensión Intracraneal , Hemorragia Subaracnoidea , Animales , Microglía/patología , Hemorragia Cerebral/patología , Transducción de Señal
2.
Neurobiol Dis ; 145: 105084, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32941979

RESUMEN

Aneurysmal intraventricular hemorrhage (IVH) survivors may recover with significant deficits in learning and memory. The goal of this study was to investigate the mechanism of memory decline after intraventricular aneurysm rupture. We developed an aneurysmal IVH rat model by injecting autologous, arterial blood over the period of two minutes into the right lateral ventricle. We also evaluated the effects of a volume-matched artificial cerebrospinal fluid (CSF) control, thrombin and the mode of delivery (pulsed hand injection versus continuous pump infusion). We performed magnetic resonance brain imaging after 1 and 5 weeks to evaluate for hydrocephalus and histological analysis of the dentate gyrus after 6 weeks. Only animals which underwent a whole blood pulsed hand injection had a spatial memory acquisition and retention deficit 5 weeks later. These animals had larger ventricles at 1 and 5 weeks than animals which underwent a continuous pump infusion of whole blood. We did not find a decline in dentate gyrus granule cell neurons or an impairment in dentate gyrus neurogenesis or differentiation 6 weeks after IVH. Rapid injections of blood or volume resulted in microglial activation in the dentate gyrus. In conclusion, our results point to mechanical injury as the predominant mechanism of memory decline after intraventricular aneurysmal rupture. However, volume-matched pulsed injections of artificial CSF did not create a spatial memory deficit at 5 weeks. Therefore, whole blood itself must play a role in the mechanism. Further research is required to evaluate whether the viscosity of blood causes additional mechanical disruption and hydrocephalus through a primary injury mechanism or whether the toxicity of blood causes a secondary injury mechanism that leads to the observed spatial memory deficit after 5 weeks.


Asunto(s)
Hemorragia Cerebral Intraventricular/complicaciones , Hemorragia Cerebral Intraventricular/patología , Trastornos de la Memoria/etiología , Trastornos de la Memoria/patología , Animales , Sangre , Masculino , Neurogénesis , Ratas , Ratas Sprague-Dawley
3.
Cereb Cortex ; 29(7): 2782-2796, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29992243

RESUMEN

Microglial cells are increasingly recognized as modulators of brain development. We previously showed that microglia colonize the cortical proliferative zones in the prenatal brain and regulate the number of precursor cells through phagocytosis. To better define cellular interactions between microglia and proliferative cells, we performed lentiviral vector-mediated intraventricular gene transfer to induce enhanced green fluorescent protein expression in fetal cerebrocortical cells. Tissues were collected and counterstained with cell-specific markers to label microglial cells and identify other cortical cell types. We found that microglial cells intimately interact with the radial glial scaffold and make extensive contacts with neural precursor cells throughout the proliferative zones, particularly in the rhesus monkey fetus when compared to rodents. We also identify a subtype of microglia, which we term 'periventricular microglia', that interact closely with mitotic precursor cells in the ventricular zone. Our data suggest that microglia are structural modulators that facilitate remodeling of the proliferative zones as precursor cells migrate away from the ventricle and may facilitate the delamination of precursor cells. Taken together, these results indicate that microglial cells are an integral component of cortical proliferative zones and contribute to the interactive milieu in which cortical precursor cells function.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/embriología , Microglía/citología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Animales , Feto , Macaca mulatta , Ratas
4.
J Comp Neurol ; 524(3): 433-47, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26267763

RESUMEN

The subventricular zone (SVZ) is greatly expanded in primates with gyrencephalic cortices and is thought to be absent from vertebrates with three-layered, lissencephalic cortices, such as the turtle. Recent work in rodents has shown that Tbr2-expressing neural precursor cells in the SVZ produce excitatory neurons for each cortical layer in the neocortex. Many excitatory neurons are generated through a two-step process in which Pax6-expressing radial glial cells divide in the VZ to produce Tbr2-expressing intermediate progenitor cells, which divide in the SVZ to produce cortical neurons. We investigated the evolutionary origin of SVZ neural precursor cells in the prenatal cerebral cortex by testing for the presence and distribution of Tbr2-expressing cells in the prenatal cortex of reptilian and avian species. We found that mitotic Tbr2(+) cells are present in the prenatal cortex of lizard, turtle, chicken, and dove. Furthermore, Tbr2(+) cells are organized into a distinct SVZ in the dorsal ventricular ridge (DVR) of turtle forebrain and in the cortices of chicken and dove. Our results are consistent with the concept that Tbr2(+) neural precursor cells were present in the common ancestor of mammals and reptiles. Our data also suggest that the organizing principle guiding the assembly of Tbr2(+) cells into an anatomically distinct SVZ, both developmentally and evolutionarily, may be shared across vertebrates. Finally, our results indicate that Tbr2 expression can be used to test for the presence of a distinct SVZ and to define the boundaries of the SVZ in developing cortices.


Asunto(s)
Evolución Biológica , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Células-Madre Neurales/metabolismo , Nicho de Células Madre/fisiología , Proteínas de Dominio T Box/metabolismo , Animales , Proteínas Aviares/metabolismo , Corteza Cerebral/citología , Embrión de Pollo/metabolismo , Columbidae/embriología , Columbidae/metabolismo , Inmunohistoquímica , Ventrículos Laterales , Lagartos/embriología , Lagartos/metabolismo , Células-Madre Neurales/citología , Proteínas de Reptiles/metabolismo , Especificidad de la Especie , Tortugas/embriología , Tortugas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...