Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 93: 043309, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27176430

RESUMEN

From macroscopic to microscopic scales it is demonstrated that diffusion through membranes can be modeled using specific boundary conditions across them. The membranes are here considered thin in comparison to the overall size of the system. In a macroscopic scale the membrane is introduced as a transmission boundary condition, which enables an effective modeling of systems that involve multiple scales. In a mesoscopic scale, a numerical lattice-Boltzmann scheme with a partial-bounceback condition at the membrane is proposed and analyzed. It is shown that this mesoscopic approach provides a consistent approximation of the transmission boundary condition. Furthermore, analysis of the mesoscopic scheme gives rise to an expression for the permeability of a thin membrane as a function of a mesoscopic transmission parameter. In a microscopic model, the mean waiting time for a passage of a particle through the membrane is in accordance with this permeability. Numerical results computed with the mesoscopic scheme are then compared successfully with analytical solutions derived in a macroscopic scale, and the membrane model introduced here is used to simulate diffusive transport between the cell nucleus and cytoplasm through the nuclear envelope in a realistic cell model based on fluorescence microscopy data. By comparing the simulated fluorophore transport to the experimental one, we determine the permeability of the nuclear envelope of HeLa cells to enhanced yellow fluorescent protein.

2.
IEEE Trans Image Process ; 24(12): 5696-705, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26441418

RESUMEN

We report here a multipurpose dynamic-interface-based segmentation tool, suitable for segmenting planar, cylindrical, and spherical surfaces in 3D. The method is fast enough to be used conveniently even for large images. Its implementation is straightforward and can be easily realized in many environments. Its memory consumption is low, and the set of parameters is small and easy to understand. The method is based on the Edwards-Wilkinson equation, which is traditionally used to model the equilibrium fluctuations of a propagating interface under the influence of temporally and spatially varying noise. We report here an adaptation of this equation into multidimensional image segmentation, and its efficient discretization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...