Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 6(9): e884, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27598968

RESUMEN

Stimulant treatment is highly effective in mitigating symptoms associated with attention-deficit/hyperactivity disorder (ADHD), though the neurobiological underpinnings of this effect have not been established. Studies using anatomical magnetic resonance imaging (MRI) in children with ADHD have suggested that long-term stimulant treatment may improve symptoms of ADHD in part by stimulating striatal hypertrophy. This conclusion is limited, however, as these studies have either used cross-sectional sampling or did not assess the impact of treatment length on their dependent measures. We therefore used longitudinal anatomical MRI in a vehicle-controlled study design to confirm causality regarding stimulant effects on striatal morphology in a rodent model of clinically relevant long-term stimulant treatment. Sprague Dawley rats were orally administered either lisdexamfetamine (LDX, 'Vyvanse') or vehicle (N=12 per group) from postnatal day 25 (PD25, young juvenile) until PD95 (young adult), and imaged one day before and one day after the 70-day course of treatment. Our LDX dosing regimen yielded blood levels of dextroamphetamine comparable to those documented in patients. Longitudinal analysis of striatal volume revealed significant hypertrophy in LDX-treated animals when compared to vehicle-treated controls, with a significant treatment by time point interaction. These findings confirm a causal link between long-term stimulant treatment and striatal hypertrophy, and support utility of longitudinal MRI in rodents as a translational approach for bridging preclinical and clinical research. Having demonstrated comparable morphological effects in both humans and rodents using the same imaging technology, future studies may now use this rodent model to identify the underlying cellular mechanisms and behavioral consequences of stimulant-induced striatal hypertrophy.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Dimesilato de Lisdexanfetamina/farmacología , Neostriado/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Dextroanfetamina/sangre , Hipertrofia , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Neostriado/diagnóstico por imagen , Neostriado/patología , Tamaño de los Órganos , Ratas , Ratas Sprague-Dawley
3.
Mol Psychiatry ; 21(7): 956-68, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26830140

RESUMEN

Abnormalities in prefrontal gamma aminobutyric acid (GABA)ergic transmission, particularly in fast-spiking interneurons that express parvalbumin (PV), are hypothesized to contribute to the pathophysiology of multiple psychiatric disorders, including schizophrenia, bipolar disorder, anxiety disorders and depression. While primarily histological abnormalities have been observed in patients and in animal models of psychiatric disease, evidence for abnormalities in functional neurotransmission at the level of specific interneuron populations has been lacking in animal models and is difficult to establish in human patients. Using an animal model of a psychiatric disease risk factor, prenatal maternal immune activation (MIA), we found reduced functional GABAergic transmission in the medial prefrontal cortex (mPFC) of adult MIA offspring. Decreased transmission was selective for interneurons expressing PV, resulted from a decrease in release probability and was not observed in calretinin-expressing neurons. This deficit in PV function in MIA offspring was associated with increased anxiety-like behavior and impairments in attentional set shifting, but did not affect working memory. Furthermore, cell-type specific optogenetic inhibition of mPFC PV interneurons was sufficient to impair attentional set shifting and enhance anxiety levels. Finally, we found that in vivo mPFC gamma oscillations, which are supported by PV interneuron function, were linearly correlated with the degree of anxiety displayed in adult mice, and that this correlation was disrupted in MIA offspring. These results demonstrate a selective functional vulnerability of PV interneurons to MIA, leading to affective and cognitive symptoms that have high relevance for schizophrenia and other psychiatric disorders.


Asunto(s)
Parvalbúminas/inmunología , Parvalbúminas/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Neuronas GABAérgicas/metabolismo , Humanos , Inmunidad Activa , Inhibición Psicológica , Interneuronas/metabolismo , Masculino , Memoria a Corto Plazo/fisiología , Ratones , Corteza Prefrontal/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal , Transmisión Sináptica/inmunología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico
4.
Neuroscience ; 321: 77-98, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-26037801

RESUMEN

Schizophrenia is a heterogeneous and poorly understood mental disorder that is presently defined solely by its behavioral symptoms. Advances in genetic, epidemiological and brain imaging techniques in the past half century, however, have significantly advanced our understanding of the underlying biology of the disorder. In spite of these advances clinical research remains limited in its power to establish the causal relationships that link etiology with pathophysiology and symptoms. In this context, animal models provide an important tool for causally testing hypotheses about biological processes postulated to be disrupted in the disorder. While animal models can exploit a variety of entry points toward the study of schizophrenia, here we describe an approach that seeks to closely approximate functional alterations observed with brain imaging techniques in patients. By modeling these intermediate pathophysiological alterations in animals, this approach offers an opportunity to (1) tightly link a single functional brain abnormality with its behavioral consequences, and (2) to determine whether a single pathophysiology can causally produce alterations in other brain areas that have been described in patients. In this review we first summarize a selection of well-replicated biological abnormalities described in the schizophrenia literature. We then provide examples of animal models that were studied in the context of patient imaging findings describing enhanced striatal dopamine D2 receptor function, alterations in thalamo-prefrontal circuit function, and metabolic hyperfunction of the hippocampus. Lastly, we discuss the implications of findings from these animal models for our present understanding of schizophrenia, and consider key unanswered questions for future research in animal models and human patients.


Asunto(s)
Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Esquizofrenia/diagnóstico por imagen , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Humanos , Ratones , Receptores de Dopamina D2/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/patología , Esquizofrenia/fisiopatología
5.
Mol Psychiatry ; 20(11): 1373-85, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25560761

RESUMEN

Hetero-oligomers of G-protein-coupled receptors have become the subject of intense investigation, because their purported potential to manifest signaling and pharmacological properties that differ from the component receptors makes them highly attractive for the development of more selective pharmacological treatments. In particular, dopamine D1 and D2 receptors have been proposed to form hetero-oligomers that couple to Gαq proteins, and SKF83959 has been proposed to act as a biased agonist that selectively engages these receptor complexes to activate Gαq and thus phospholipase C. D1/D2 heteromers have been proposed as relevant to the pathophysiology and treatment of depression and schizophrenia. We used in vitro bioluminescence resonance energy transfer, ex vivo analyses of receptor localization and proximity in brain slices, and behavioral assays in mice to characterize signaling from these putative dimers/oligomers. We were unable to detect Gαq or Gα11 protein coupling to homomers or heteromers of D1 or D2 receptors using a variety of biosensors. SKF83959-induced locomotor and grooming behaviors were eliminated in D1 receptor knockout (KO) mice, verifying a key role for D1-like receptor activation. In contrast, SKF83959-induced motor responses were intact in D2 receptor and Gαq KO mice, as well as in knock-in mice expressing a mutant Ala(286)-CaMKIIα that cannot autophosphorylate to become active. Moreover, we found that, in the shell of the nucleus accumbens, even in neurons in which D1 and D2 receptor promoters are both active, the receptor proteins are segregated and do not form complexes. These data are not compatible with SKF83959 signaling through Gαq or through a D1/D2 heteromer and challenge the existence of such a signaling complex in the adult animals that we used for our studies.


Asunto(s)
Agonistas de Dopamina/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Multimerización de Proteína/fisiología , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/análogos & derivados , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Antagonistas de Dopamina/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Aseo Animal/efectos de los fármacos , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Fosforilación/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética
6.
Neuroscience ; 137(3): 915-24, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16326019

RESUMEN

Several findings suggest that glucocorticoid hormones influence the propensity of an individual to develop cocaine abuse. These hormones activate two related transcription factors, the glucocorticoid receptor and the mineralocorticoid receptor. We have shown previously that mice carrying a mutation of the glucocorticoid receptor gene specifically in neural cells, glucocorticoid receptor knock-out in the brain, show a dramatic decrease in cocaine-induced self-administration and no behavioral sensitization to this drug, two experimental procedures considered relevant models of addiction. Here, we investigated in glucocorticoid receptor knock-out in the brain mice the consequences of this mutation at the level of the expression of neuropeptide, dopamine receptor and glutamate receptor subunit mRNAs. We quantified mRNA levels in the cortex, striatum and accumbens under basal conditions and following acute or repeated cocaine treatments. Our results show that, under basal conditions, neuropeptide (substance P, dynorphin) and dopamine receptor (D1, D2) mRNAs were decreased in glucocorticoid receptor knock-out in the brain mice in the dorsal striatum but not in the accumbens. However, cocaine-induced changes in the levels of these mRNAs were not modified in glucocorticoid receptor knock-out in the brain mice. In contrast, mutant mice showed altered response in mRNA levels of N-methyl-D-aspartate, GLUR5 and GLUR6 glutamate receptor subunits as well as of enkephalin following cocaine administration. These modifications may be associated to decrease of behavioral effects of cocaine observed in glucocorticoid receptor knock-out in the brain mice.


Asunto(s)
Conducta Animal/efectos de los fármacos , Química Encefálica/efectos de los fármacos , Química Encefálica/genética , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Regulación de la Expresión Génica , Receptores de Glucocorticoides/metabolismo , Animales , Dinorfinas/biosíntesis , Encefalinas/biosíntesis , Hibridación in Situ , Ácido Kaínico/metabolismo , Masculino , Ratones , Ratones Transgénicos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D2/efectos de los fármacos , Receptores de Glucocorticoides/efectos de los fármacos , Receptores de Ácido Kaínico/biosíntesis , Receptores de Ácido Kaínico/genética , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/genética , Sustancia P/biosíntesis , Transmisión Sináptica/efectos de los fármacos , Receptor de Ácido Kaínico GluK2
8.
J Neurosci ; 21(15): 5520-7, 2001 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-11466423

RESUMEN

The pituitary adenylate cyclase activating polypeptide (PACAP) type I receptor (PAC1) is a G-protein-coupled receptor binding the strongly conserved neuropeptide PACAP with 1000-fold higher affinity than the related peptide vasoactive intestinal peptide. PAC1-mediated signaling has been implicated in neuronal differentiation and synaptic plasticity. To gain further insight into the biological significance of PAC1-mediated signaling in vivo, we generated two different mutant mouse strains, harboring either a complete or a forebrain-specific inactivation of PAC1. Mutants from both strains show a deficit in contextual fear conditioning, a hippocampus-dependent associative learning paradigm. In sharp contrast, amygdala-dependent cued fear conditioning remains intact. Interestingly, no deficits in other hippocampus-dependent tasks modeling declarative learning such as the Morris water maze or the social transmission of food preference are observed. At the cellular level, the deficit in hippocampus-dependent associative learning is accompanied by an impairment of mossy fiber long-term potentiation (LTP). Because the hippocampal expression of PAC1 is restricted to mossy fiber terminals, we conclude that presynaptic PAC1-mediated signaling at the mossy fiber synapse is involved in both LTP and hippocampus-dependent associative learning.


Asunto(s)
Aprendizaje por Asociación/fisiología , Potenciación a Largo Plazo/fisiología , Fibras Musgosas del Hipocampo/metabolismo , Receptores de la Hormona Hipofisaria/deficiencia , Receptores de la Hormona Hipofisaria/metabolismo , Animales , Reacción de Prevención/fisiología , Señales (Psicología) , Electrochoque , Técnicas In Vitro , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Noqueados , Ratones Mutantes , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Terminales Presinápticos/metabolismo , Prosencéfalo/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Receptores de la Hormona Hipofisaria/genética , Transducción de Señal/fisiología , Conducta Social
9.
Science ; 289(5488): 2344-7, 2000 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-11009419

RESUMEN

In mammals, circadian oscillators reside not only in the suprachiasmatic nucleus of the brain, which harbors the central pacemaker, but also in most peripheral tissues. Here, we show that the glucocorticoid hormone analog dexamethasone induces circadian gene expression in cultured rat-1 fibroblasts and transiently changes the phase of circadian gene expression in liver, kidney, and heart. However, dexamethasone does not affect cyclic gene expression in neurons of the suprachiasmatic nucleus. This enabled us to establish an apparent phase-shift response curve specifically for peripheral clocks in intact animals. In contrast to the central clock, circadian oscillators in peripheral tissues appear to remain responsive to phase resetting throughout the day.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Proteínas de Unión al ADN , Dexametasona/farmacología , Regulación de la Expresión Génica , Transducción de Señal , Animales , Proteínas de Ciclo Celular , Línea Celular , Dexametasona/análogos & derivados , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos , Mutación , Miocardio/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Ratas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Núcleo Supraquiasmático/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
EMBO Rep ; 1(5): 447-51, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11258486

RESUMEN

To dissect the effects of corticosteroids mediated by the mineralocorticoid (MR) and the glucocorticoid receptor (GR) in the central nervous system, we compared MR-/- mice, whose salt loss syndrome was corrected by exogenous NaCI administration, with GR-/- mice having a brain-specific disruption of the GR gene generated by the Cre/loxP-recombination system. Neuropathological analyses revealed a decreased density of granule cells in the hippocampus of adult MR-/- mice but not in mice with disruption of GR. Furthermore, adult MR-/- mice exhibited a significant reduction of granule cell neurogenesis to 65% of control levels, possibly mediated by GR due to elevated corticosterone plasma levels. Neurogenesis was unaltered in adult mice with disruption of GR. Thus, we could attribute long-term trophic effects of adrenal steroids on dentate granule cells to MR. These MR-related alterations may participate in the pathogenesis of hippocampal changes observed in ageing, chronic stress and affective disorders.


Asunto(s)
Hipocampo/citología , Hipocampo/metabolismo , Mutagénesis , Neuronas/fisiología , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/fisiología , Animales , Corticosterona/sangre , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cloruro de Sodio/farmacología
14.
Genes Dev ; 13(22): 2996-3002, 1999 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-10580006

RESUMEN

The glucocorticoid receptor (GR) coordinates a multitude of physiological responses in vivo. In vitro, glucocorticoids are required for sustained proliferation of erythroid progenitors (ebls). Here, we analyze the impact of the GR on erythropoiesis in vivo, using GR-deficient mice or mice expressing a GR defective for transactivation. In vitro, sustained proliferation of primary ebls requires an intact GR. In vivo, the GR is required for rapid expansion of ebls under stress situations like erythrolysis or hypoxia. A particular, GR-sensitive progenitor could be identified as being responsible for the stress response. Thus, GR-mediated regulation of ebl proliferation is essential for stress erythropoiesis in vivo.


Asunto(s)
Eritropoyesis/fisiología , Receptores de Glucocorticoides/fisiología , Estrés Fisiológico/fisiopatología , Activación Transcripcional , Anemia/genética , Anemia/metabolismo , Animales , Células Cultivadas , Pollos , Medio de Cultivo Libre de Suero , Dimerización , Células Precursoras Eritroides/patología , Células Precursoras Eritroides/trasplante , Eritropoyesis/genética , Eritropoyetina/farmacología , Hematopoyesis Extramedular , Trasplante de Células Madre Hematopoyéticas , Hemólisis , Hipoxia/genética , Hipoxia/fisiopatología , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/fisiopatología , Leucemia Eritroblástica Aguda/virología , Hígado/embriología , Ratones , Ratones Noqueados , Quimera por Radiación , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/deficiencia , Receptores de Glucocorticoides/genética , Factor de Células Madre/farmacología , Estrés Fisiológico/genética
15.
Nat Genet ; 23(1): 99-103, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10471508

RESUMEN

The glucocorticoid receptor (Gr, encoded by the gene Grl1) controls transcription of target genes both directly by interaction with DNA regulatory elements and indirectly by cross-talk with other transcription factors. In response to various stimuli, including stress, glucocorticoids coordinate metabolic, endocrine, immune and nervous system responses and ensure an adequate profile of transcription. In the brain, Gr has been proposed to modulate emotional behaviour, cognitive functions and addictive states. Previously, these aspects were not studied in the absence of functional Gr because inactivation of Grl1 in mice causes lethality at birth (F.T., C.K. and G.S., unpublished data). Therefore, we generated tissue-specific mutations of this gene using the Cre/loxP -recombination system. This allowed us to generate viable adult mice with loss of Gr function in selected tissues. Loss of Gr function in the nervous system impairs hypothalamus-pituitary-adrenal (HPA)-axis regulation, resulting in increased glucocorticoid (GC) levels that lead to symptoms reminiscent of those observed in Cushing syndrome. Conditional mutagenesis of Gr in the nervous system provides genetic evidence for the importance of Gr signalling in emotional behaviour because mutant animals show an impaired behavioural response to stress and display reduced anxiety.


Asunto(s)
Ansiedad/genética , Encéfalo/fisiología , Integrasas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/fisiología , Glándulas Suprarrenales/metabolismo , Factores de Edad , Animales , Encéfalo/metabolismo , Corticosterona/biosíntesis , Síndrome de Cushing/genética , ADN Nucleotidiltransferasas/metabolismo , Modelos Animales de Enfermedad , Riñón/metabolismo , Ratones , Ratones Transgénicos , Mutagénesis , Obesidad/genética , Osteoporosis/genética , Recombinasas , Factores de Tiempo , Transfección
16.
J Steroid Biochem Mol Biol ; 69(1-6): 253-9, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10418999

RESUMEN

The glucocorticoid receptor is an ubiquitously expressed transcription factor involved in the regulation of many different physiological processes. Activated by glucocorticoids the receptor regulates transcription positively or negatively either by direct binding to DNA or by protein protein interactions. In order to define the role of the receptor during development and in physiology several mutations have been generated in the mouse. Mice with a disrupted glucocorticoid receptor gene die shortly after birth due to respiratory failure indicating an important role of the receptor in lung function. Transcription of genes encoding gluconeogenic enzymes in the liver is decreased, proliferation of erythroid progenitors is impaired and the HPA axis is strongly upregulated. To analyze molecular mechanisms of glucocorticoid receptor action in vivo a point mutation has been introduced into the mouse genome which allows to separate DNA-binding-dependent from DNA-binding-independent actions of the receptor. Mice homozygous for the point mutation survive indicating that DNA-binding of the receptor is not required for survival. Induction of glucoconegenic enzymes and proliferation of erythroid progenitors however is impaired. Interestingly, repression of corticotropin releasing factor (CRF) synthesis is maintained, whereas proopiomelanocortin (POMC) expression is upregulated. Since mice with a disrupted glucocorticoid receptor gene die shortly after birth attempts using the Cre/loxP-recombination system are made to bypass early lethality and to study the function of the receptor in defined cell types of adult animals.


Asunto(s)
Receptores de Glucocorticoides/genética , Animales , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Ratones , Ratones Mutantes , Mutagénesis , Receptores de Glucocorticoides/fisiología , Transcripción Genética/fisiología
17.
Development ; 126(13): 2935-44, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10357937

RESUMEN

Molecular mechanisms underlying the generation of distinct cell phenotypes is a key issue in developmental biology. A major paradigm of determination of neural cell fate concerns the development of sympathetic neurones and neuroendocrine chromaffin cells from a common sympathoadrenal (SA) progenitor cell. Two decades of in vitro experiments have suggested an essential role of glucocorticoid receptor (GR)-mediated signalling in generating chromaffin cells. Targeted mutation of the GR should consequently abolish chromaffin cells. The present analysis of mice lacking GR gene product demonstrates that animals have normal numbers of adrenal chromaffin cells. Moreover, there are no differences in terms of apoptosis and proliferation or in expression of several markers (e.g. GAP43, acetylcholinesterase, adhesion molecule L1) of chromaffin cells in GR-deficient and wild-type mice. However, GR mutant mice lack the adrenaline-synthesizing enzyme PNMT and secretogranin II. Chromaffin cells of GR-deficient mice exhibit the typical ultrastructural features of this cell phenotype, including the large chromaffin granules that distinguish them from sympathetic neurones. Peripherin, an intermediate filament of sympathetic neurones, is undetectable in chromaffin cells of GR mutants. Finally, when stimulated with nerve growth factor in vitro, identical proportions of chromaffin cells from GR-deficient and wild-type mice extend neuritic processes. We conclude that important phenotypic features of chromaffin cells that distinguish them from sympathetic neurones develop normally in the absence of GR-mediated signalling. Most importantly, chromaffin cells in GR-deficient mice do not convert to a neuronal phenotype. These data strongly suggest that the dogma of an essential role of glucocorticoid signalling for the development of chromaffin cells must be abandoned.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Células Cromafines/metabolismo , Receptores de Glucocorticoides/genética , Animales , Apoptosis/genética , Biomarcadores , Catecolaminas/metabolismo , Células Cromafines/citología , Cromograninas , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Ratones , Ratones Noqueados , Microscopía Electrónica , Mutación , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Feniletanolamina N-Metiltransferasa/metabolismo , Proteínas/genética , Receptores de Glucocorticoides/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
19.
J Mol Biol ; 285(1): 175-82, 1999 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-9878397

RESUMEN

The Cre/loxP recombination system allows the generation of tissue-specific somatic mutations in mice. Additional temporal control of somatic mutagenesis is highly desirable, as this would permit a more precise analysis of gene function in complex systems such as the central nervous system. Extending our previous studies, we compared several ligand-regulated recombinases, in which the ligand-binding domain (LBD) of the progesterone receptor or the estrogen receptor was fused to the Cre recombinase. A fusion protein between the Cre recombinase and a truncated LBD of the progesterone receptor was chosen to obtain inducible recombination in the brain. This fusion protein can be activated by the synthetic steroid RU486, but not by the physiological hormone progesterone. Its expression was targeted to the brain using regulatory sequences of the calcium-calmodulin-dependent kinase IIalpha or the Thy-1 gene. Application of RU486 to the mice induced Cre-mediated recombination of a lacZ reporter transgene in the cortex and hippocampus, showing that spatially and temporally controlled gene targeting can be mediated in the brain.


Asunto(s)
Encéfalo/metabolismo , Integrasas/metabolismo , Receptores de Estrógenos/genética , Receptores de Progesterona/genética , Recombinación Genética , Proteínas Virales , Animales , Humanos , Integrasas/genética , Ligandos , Ratones , Ratones Transgénicos , Mifepristona/farmacología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Recombinación Genética/efectos de los fármacos
20.
Curr Opin Genet Dev ; 8(5): 532-8, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9794823

RESUMEN

Upon hormone binding, the activated glucocorticoid receptor (GR) functions as a transcription factor via different modes of action to control gene expression. Recent gene-targeting studies in mice provide new insight into the role of GR in vivo and are helping decipher the molecular mechanisms underlying its actions.


Asunto(s)
Regulación de la Expresión Génica , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Factores de Transcripción/metabolismo , Animales , Homeostasis , Ratones , Modelos Biológicos , Receptores de Glucocorticoides/química , Transducción de Señal , Estrés Fisiológico , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...