Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38766039

RESUMEN

Contact-sites are specialized zones of proximity between two organelles, essential for organelle communication and coordination. The formation of contacts between the Endoplasmic Reticulum (ER), and other organelles, relies on a unique membrane environment enriched in sterols. However, how these sterol-rich domains are formed and maintained had not been understood. We found that the yeast membrane protein Yet3, the homolog of human BAP31, is localized to multiple ER contact sites. We show that Yet3 interacts with all the enzymes of the post-squalene ergosterol biosynthesis pathway and recruits them to create sterol-rich domains. Increasing sterol levels at ER contacts causes its depletion from the plasma membrane leading to a compensatory reaction and altered cell metabolism. Our data shows that Yet3 provides on-demand sterols at contacts thus shaping organellar structure and function. A molecular understanding of this protein's functions gives new insights into the role of BAP31 in development and pathology.

2.
Curr Opin Cell Biol ; 88: 102363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677049

RESUMEN

Cryo-electron tomography (cryo-ET) allows high resolution 3D imaging of biological samples in near-native environments. Thus, cryo-ET has become the method of choice to analyze the unperturbed organization of cellular membranes. Here, we briefly discuss current cryo-ET workflows and their application to study membrane biology in situ, under basal and pathological conditions.


Asunto(s)
Membrana Celular , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Membrana Celular/metabolismo , Membrana Celular/química , Humanos , Animales
3.
Nat Cell Biol ; 20(7): 800-810, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915359

RESUMEN

Faithful chromosome segregation depends on the ability of sister kinetochores to attach to spindle microtubules. The outer layer of kinetochores transiently expands in early mitosis to form a fibrous corona, and compacts following microtubule capture. Here we show that the dynein adaptor Spindly and the RZZ (ROD-Zwilch-ZW10) complex drive kinetochore expansion in a dynein-independent manner. C-terminal farnesylation and MPS1 kinase activity cause conformational changes of Spindly that promote oligomerization of RZZ-Spindly complexes into a filamentous meshwork in cells and in vitro. Concurrent with kinetochore expansion, Spindly potentiates kinetochore compaction by recruiting dynein via three conserved short linear motifs. Expanded kinetochores unable to compact engage in extensive, long-lived lateral microtubule interactions that persist to metaphase, and result in merotelic attachments and chromosome segregation errors in anaphase. Thus, dynamic kinetochore size regulation in mitosis is coordinated by a single, Spindly-based mechanism that promotes initial microtubule capture and subsequent correct maturation of attachments.


Asunto(s)
Segregación Cromosómica , Cinetocoros/patología , Microtúbulos/patología , Mitosis , Huso Acromático/patología , Neoplasias del Cuello Uterino/patología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Dineínas/genética , Dineínas/metabolismo , Femenino , Células HeLa , Humanos , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Unión Proteica , Transducción de Señal , Huso Acromático/genética , Huso Acromático/metabolismo , Factores de Tiempo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo
4.
J Cell Biol ; 216(4): 961-981, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28320825

RESUMEN

Kinetochores are macromolecular assemblies that connect chromosomes to spindle microtubules (MTs) during mitosis. The metazoan-specific ≈800-kD ROD-Zwilch-ZW10 (RZZ) complex builds a fibrous corona that assembles on mitotic kinetochores before MT attachment to promote chromosome alignment and robust spindle assembly checkpoint signaling. In this study, we combine biochemical reconstitutions, single-particle electron cryomicroscopy, cross-linking mass spectrometry, and structural modeling to build a complete model of human RZZ. We find that RZZ is structurally related to self-assembling cytosolic coat scaffolds that mediate membrane cargo trafficking, including Clathrin, Sec13-Sec31, and αß'ε-COP. We show that Spindly, a dynein adaptor, is related to BicD2 and binds RZZ directly in a farnesylation-dependent but membrane-independent manner. Through a targeted chemical biology approach, we identify ROD as the Spindly farnesyl receptor. Our results suggest that RZZ is dynein's cargo at human kinetochores.


Asunto(s)
Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Huso Acromático/metabolismo , Huso Acromático/fisiología , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Dineínas/metabolismo , Células HeLa , Humanos , Cinetocoros/fisiología , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Microtúbulos/metabolismo , Mitosis/fisiología , Transporte de Proteínas/fisiología
5.
Cell ; 167(4): 1028-1040.e15, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27881301

RESUMEN

Kinetochores, multisubunit protein assemblies, connect chromosomes to spindle microtubules to promote chromosome segregation. The 10-subunit KMN assembly (comprising KNL1, MIS12, and NDC80 complexes, designated KNL1C, MIS12C, and NDC80C) binds microtubules and regulates mitotic checkpoint function through NDC80C and KNL1C, respectively. MIS12C, on the other hand, connects the KMN to the chromosome-proximal domain of the kinetochore through a direct interaction with CENP-C. The structural basis for this crucial bridging function of MIS12C is unknown. Here, we report crystal structures of human MIS12C associated with a fragment of CENP-C and unveil the role of Aurora B kinase in the regulation of this interaction. The structure of MIS12:CENP-C complements previously determined high-resolution structures of functional regions of NDC80C and KNL1C and allows us to build a near-complete structural model of the KMN assembly. Our work illuminates the structural organization of essential chromosome segregation machinery that is conserved in most eukaryotes.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Cristalografía por Rayos X , Cinetocoros/química , Complejos Multiproteicos/química , Animales , Aurora Quinasa B/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas del Citoesqueleto , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Químicos , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo
6.
Nature ; 537(7619): 249-253, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27580032

RESUMEN

Chromosomes are carriers of genetic material and their accurate transfer from a mother cell to its two daughters during cell division is of paramount importance for life. Kinetochores are crucial for this process, as they connect chromosomes with microtubules in the mitotic spindle. Kinetochores are multi-subunit complexes that assemble on specialized chromatin domains, the centromeres, that are able to enrich nucleosomes containing the histone H3 variant centromeric protein A (CENP-A). A group of several additional CENPs, collectively known as constitutive centromere associated network (CCAN), establish the inner kinetochore, whereas a ten-subunit assembly known as the KMN network creates a microtubule-binding site in the outer kinetochore. Interactions between CENP-A and two CCAN subunits, CENP-C and CENP-N, have been previously described, but a comprehensive understanding of CCAN organization and of how it contributes to the selective recognition of CENP-A has been missing. Here we use biochemical reconstitution to unveil fundamental principles of kinetochore organization and function. We show that cooperative interactions of a seven-subunit CCAN subcomplex, the CHIKMLN complex, determine binding selectivity for CENP-A over H3-nucleosomes. The CENP-A:CHIKMLN complex binds directly to the KMN network, resulting in a 21-subunit complex that forms a minimal high-affinity linkage between CENP-A nucleosomes and microtubules in vitro. This structural module is related to fungal point kinetochores, which bind a single microtubule. Its convolution with multiple CENP-A proteins may give rise to the regional kinetochores of higher eukaryotes, which bind multiple microtubules. Biochemical reconstitution paves the way for mechanistic and quantitative analyses of kinetochores.


Asunto(s)
Cinetocoros/química , Cinetocoros/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Autoantígenos/metabolismo , Centrómero/química , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica , Proteínas Cromosómicas no Histona/metabolismo , Humanos , Microtúbulos/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Huso Acromático
7.
Open Biol ; 6(2): 150236, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26911624

RESUMEN

Accurate chromosome segregation during mitosis and meiosis is crucial for cellular and organismal viability. Kinetochores connect chromosomes with spindle microtubules and are essential for chromosome segregation. These large protein scaffolds emerge from the centromere, a specialized region of the chromosome enriched with the histone H3 variant CENP-A. In most eukaryotes, the kinetochore core consists of the centromere-proximal constitutive centromere-associated network (CCAN), which binds CENP-A and contains 16 subunits, and of the centromere-distal Knl1 complex, Mis12 complex, Ndc80 complex (KMN) network, which binds microtubules and contains 10 subunits. In the fruitfly, Drosophila melanogaster, the kinetochore underwent remarkable simplifications. All CCAN subunits, with the exception of centromeric protein C (CENP-C), and two KMN subunits, Dsn1 and Zwint, cannot be identified in this organism. In addition, two paralogues of the KMN subunit Nnf1 (Nnf1a and Nnf1b) are present. Finally, the Spc105R subunit, homologous to human Knl1/CASC5, underwent considerable sequence changes in comparison with other organisms. We combined biochemical reconstitution with biophysical and structural methods to investigate how these changes reflect on the organization of the Drosophila KMN network. We demonstrate that the Nnf1a and Nnf1b paralogues are subunits of distinct complexes, both of which interact directly with Spc105R and with CENP-C, for the latter of which we identify a binding site on the Mis12 subunit. Our studies shed light on the structural and functional organization of a highly divergent kinetochore particle.


Asunto(s)
Drosophila melanogaster/metabolismo , Cinetocoros/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Drosophila melanogaster/genética , Humanos , Cinetocoros/química , Cinetocoros/ultraestructura , Espectrometría de Masas , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes , Alineación de Secuencia
8.
PLoS One ; 9(5): e96828, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24830408

RESUMEN

Eukaryotic mRNA decay is a highly regulated process allowing cells to rapidly modulate protein production in response to internal and environmental cues. Mature translatable eukaryotic mRNAs are protected from fast and uncontrolled degradation in the cytoplasm by two cis-acting stability determinants: a methylguanosine (m(7)G) cap and a poly(A) tail at their 5' and 3' extremities, respectively. The hydrolysis of the m(7)G cap structure, known as decapping, is performed by the complex composed of the Dcp2 catalytic subunit and its partner Dcp1. The Dcp1-Dcp2 decapping complex has a low intrinsic activity and requires accessory factors to be fully active. Among these factors, Pat1 is considered to be a central scaffolding protein involved in Dcp2 activation but also in inhibition of translation initiation. Here, we present the structural and functional study of the C-terminal domain from S. cerevisiae Pat1 protein. We have identified two conserved and functionally important regions located at both extremities of the domain. The first region is involved in binding to Lsm1-7 complex. The second patch is specific for fungal proteins and is responsible for Pat1 interaction with Edc3. These observations support the plasticity of the protein interaction network involved in mRNA decay and show that evolution has extended the C-terminal alpha-helical domain from fungal Pat1 proteins to generate a new binding platform for protein partners.


Asunto(s)
Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Clonación Molecular , Prueba de Complementación Genética , Hidrólisis , Conformación Molecular , Datos de Secuencia Molecular , Plásmidos/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Multimerización de Proteína , Estructura Terciaria de Proteína , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Temperatura , Técnicas del Sistema de Dos Híbridos
9.
Mol Cell ; 53(4): 591-605, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24530301

RESUMEN

Faithful chromosome segregation is mandatory for cell and organismal viability. Kinetochores, large protein assemblies embedded in centromeric chromatin, establish a mechanical link between chromosomes and spindle microtubules. The KMN network, a conserved 10-subunit kinetochore complex, harbors the microtubule-binding interface. RWD domains in the KMN subunits Spc24 and Spc25 mediate kinetochore targeting of the microtubule-binding subunits by interacting with the Mis12 complex, a KMN subcomplex that tethers directly onto the underlying chromatin layer. Here, we show that Knl1, a KMN subunit involved in mitotic checkpoint signaling, also contains RWD domains that bind the Mis12 complex and that mediate kinetochore targeting of Knl1. By reporting the first 3D electron microscopy structure of the KMN network, we provide a comprehensive framework to interpret how interactions of RWD-containing proteins with the Mis12 complex shape KMN network topology. Our observations unveil a regular pattern in the construction of the outer kinetochore.


Asunto(s)
Cinetocoros/química , Proteínas Asociadas a Microtúbulos/química , Secuencia de Aminoácidos , Centrómero/química , Segregación Cromosómica , Cristalografía por Rayos X , Escherichia coli/metabolismo , Células HeLa , Humanos , Puntos de Control de la Fase M del Ciclo Celular , Microscopía Electrónica , Microtúbulos/química , Mitosis , Modelos Moleculares , Datos de Secuencia Molecular , Plásmidos/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
10.
J Cell Biol ; 190(5): 835-52, 2010 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-20819937

RESUMEN

Kinetochores are nucleoprotein assemblies responsible for the attachment of chromosomes to spindle microtubules during mitosis. The KMN network, a crucial constituent of the outer kinetochore, creates an interface that connects microtubules to centromeric chromatin. The NDC80, MIS12, and KNL1 complexes form the core of the KMN network. We recently reported the structural organization of the human NDC80 complex. In this study, we extend our analysis to the human MIS12 complex and show that it has an elongated structure with a long axis of approximately 22 nm. Through biochemical analysis, cross-linking-based methods, and negative-stain electron microscopy, we investigated the reciprocal organization of the subunits of the MIS12 complex and their contacts with the rest of the KMN network. A highlight of our findings is the identification of the NSL1 subunit as a scaffold supporting interactions of the MIS12 complex with the NDC80 and KNL1 complexes. Our analysis has important implications for understanding kinetochore organization in different organisms.


Asunto(s)
Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Secuencia de Aminoácidos , Cromosomas/metabolismo , Escherichia coli/genética , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/ultraestructura , Microtúbulos/genética , Microtúbulos/metabolismo , Mitosis , Datos de Secuencia Molecular , Peso Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
11.
Nucleic Acids Res ; 38(15): 5088-104, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20403814

RESUMEN

Thermococcales (phylum Euryarchaeota) are model organisms for physiological and molecular studies of hyperthermophiles. Here we describe three new plasmids from Thermococcales that could provide new tools and model systems for genetic and molecular studies in Archaea. The plasmids pTN2 from Thermococcus nautilus sp. 30-1 and pP12-1 from Pyrococcus sp. 12-1 belong to the same family. They have similar size (approximately 12 kb) and share six genes, including homologues of genes encoded by the virus PAV1 from Pyrococcus abyssi. The plasmid pT26-2 from Thermococcus sp. 26-2 (21.5 kb), that corresponds to another plasmid family, encodes many proteins having homologues in virus-like elements integrated in several genomes of Thermococcales and Methanococcales. Our analyses confirm that viruses and plasmids are evolutionary related and co-evolve with their hosts. Whereas all plasmids previously isolated from Thermococcales replicate by the rolling circle mechanism, the three plasmids described here probably replicate by the theta mechanism. The plasmids pTN2 and pP12-1 encode a putative helicase of the SFI superfamily and a new family of DNA polymerase, whose activity was demonstrated in vitro, whereas pT26-2 encodes a putative new type of helicase. This strengthens the idea that plasmids and viruses are a reservoir of novel protein families involved in DNA replication.


Asunto(s)
Proteínas Arqueales/genética , Plásmidos/genética , Pyrococcus/genética , Thermococcus/genética , Proteínas Arqueales/clasificación , Secuencia de Bases , Replicación del ADN , Methanococcales/genética , Datos de Secuencia Molecular , Plásmidos/clasificación , Plásmidos/aislamiento & purificación
12.
J Mol Biol ; 398(5): 641-6, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20359485

RESUMEN

Flavin adenine dinucleotide (FAD) synthetase is an essential enzyme responsible for the synthesis of FAD by adenylation of riboflavin monophosphate (FMN). We have solved the 1.9 A resolution structure of Fad1, the yeast FAD synthetase, in complex with the FAD product in the active site. The structure of Fad1 shows it to be a member of the PP-ATPase superfamily. Important conformational differences in the two motifs involved in binding the phosphate moieties of FAD compared to the Candida glabrata FMNT ortholog suggests that this loop is dynamic and undergoes substantial conformational changes during its catalytic cycle.


Asunto(s)
Flavina-Adenina Dinucleótido/química , Nucleotidiltransferasas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Candida glabrata/química , Candida glabrata/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Flavina-Adenina Dinucleótido/metabolismo , Modelos Moleculares , Nucleotidiltransferasas/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
J Biol Chem ; 284(33): 22222-22237, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19535331

RESUMEN

We have characterized the structure and the function of the 6.6-kDa protein SvtR (formerly called gp08) from the rod-shaped virus SIRV1, which infects the hyperthermophilic archaeon Sulfolobus islandicus that thrives at 85 degrees C in hot acidic springs. The protein forms a dimer in solution. The NMR solution structure of the protein consists of a ribbon-helix-helix (RHH) fold between residues 13 and 56 and a disordered N-terminal region (residues 1-12). The structure is very similar to that of bacterial RHH proteins despite the low sequence similarity. We demonstrated that the protein binds DNA and uses its beta-sheet face for the interaction like bacterial RHH proteins. To detect all the binding sites on the 32.3-kb SIRV1 linear genome, we designed and performed a global genome-wide search of targets based on a simplified electrophoretic mobility shift assay. Four targets were recognized by the protein. The strongest binding was observed with the promoter of the gene coding for a virion structural protein. When assayed in a host reconstituted in vitro transcription system, the protein SvtR (Sulfolobus virus transcription regulator) repressed transcription from the latter promoter, as well as from the promoter of its own gene.


Asunto(s)
Regulación Viral de la Expresión Génica , Rudiviridae/metabolismo , Sulfolobus/virología , Transcripción Genética , Proteínas Virales/química , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Dimerización , Conformación Molecular , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Unión Proteica , Estructura Secundaria de Proteína , Relación Estructura-Actividad
14.
Protein Sci ; 18(4): 845-9, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19319936

RESUMEN

Viruses infecting hyperthermophilic archaea have intriguing morphologies and genomic properties. The vast majority of their genes do not have homologs other than in other hyperthermophilic viruses, and the biology of these viruses is poorly understood. As part of a structural genomics project on the proteins of these viruses, we present here the structure of a 102 amino acid protein from acidianus filamentous virus 1 (AFV1-102). The structure shows that it is made of two identical motifs that have poor sequence similarity. Although no function can be proposed from structural analysis, tight binding of the gateway tag peptide in a groove between the two motifs suggests AFV1-102 is involved in protein protein interactions.


Asunto(s)
Acidianus/virología , Cristalografía por Rayos X , Lipothrixviridae/química , Proteínas Virales/química , Lipothrixviridae/metabolismo , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Virales/metabolismo
15.
Virol J ; 4: 12, 2007 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-17241456

RESUMEN

The extraordinary morphologies of viruses infecting hyperthermophilic archaea clearly distinguish them from bacterial and eukaryotic viruses. Moreover, their genomes code for proteins that to a large extend have no related sequences in the extent databases. However, a small pool of genes is shared by overlapping subsets of these viruses, and the most conserved gene, exemplified by the ORF109 of the Acidianus Filamentous Virus 3, AFV3, is present on genomes of members of three viral familes, the Lipothrixviridae, Rudiviridae, and "Bicaudaviridae", as well as of the unclassified Sulfolobus Turreted Icosahedral Virus, STIV. We present here the crystal structure of the protein (Mr = 13.1 kD, 109 residues) encoded by the AFV3 ORF 109 in two different crystal forms at 1.5 and 1.3 A resolution. The structure of AFV3-109 is a five stranded beta-sheet with loops on one side and three helices on the other. It forms a dimer adopting the shape of a cradle that encompasses the best conserved regions of the sequence. No protein with a related fold could be identified except for the ortholog from STIV1, whose structure was deposited at the Protein Data Bank. We could clearly identify a well bound glycerol inside the cradle, contacting exclusively totally conserved residues. This interaction was confirmed in solution by fluorescence titration. Although the function of AFV3-109 cannot be deduced directly from its structure, structural homology with the STIV1 protein, and the size and charge distribution of the cavity suggested it could interact with nucleic acids. Fluorescence quenching titrations also showed that AFV3-109 interacts with dsDNA. Genomic sequence analysis revealed bacterial homologs of AFV3-109 as a part of a putative previously unidentified prophage sequences in some Firmicutes.


Asunto(s)
Virus de Archaea/química , Proteínas de la Cápside/química , Crenarchaeota/virología , Secuencia de Aminoácidos , Virus de Archaea/genética , Proteínas de la Cápside/metabolismo , Secuencia Conservada , Cristalización , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...