Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Physiol Meas ; 45(9)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39255832

RESUMEN

Objective.Peripheral Artery Disease (PAD) is a progressive cardiovascular condition affecting 8-10 million adults in the United States. PAD elevates the risk of cardiovascular events, but up to 50% of people with PAD are asymptomatic and undiagnosed. In this study, we tested the ability of a device, REFLO (Rapid Electromagnetic FLOw), to identify low blood flow using electromagnetic radiation and dynamic thermography toward a non-invasive PAD diagnostic.Approach.During REFLO radio frequency (RF) irradiation, the rate of temperature increase is a function of the rate of energy absorption and blood flow to the irradiated tissue. For a given rate of RF energy absorption, a slow rate of temperature increase implies a large blood flow rate to the tissue. This is due to the cooling effect of the blood. Post-irradiation, a slow rate of temperature decrease is associated with a low rate of blood flow to the tissue. Here, we performed two cohorts of controlled flow experiments on human calves during baseline, occluded, and post-occluded conditions. Nonlinear regression was used to fit temperature data and obtain the rate constant, which was used as a metric for blood flow.Main results.In the pilot study, (N= 7) REFLO distinguished between baseline and post-occlusion during the irradiation phase, and between baseline and occlusion in the post-irradiation phase. In the reliability study, (N= 5 with 3 visits each), two-way ANOVA revealed that flow and subject significantly affected skin heating and cooling rates, while visit did not.Significance.Results suggest that MMW irradiation can be used to distinguish between blood flow rates in humans. Utilizing the rate of skin cooling rather than heating is more consistent for distinguishing flow. Future modifications and clinical testing will aim to improve REFLO's ability to distinguish between flow rates and evaluate its ability to accurately identify PAD.


Asunto(s)
Termografía , Humanos , Masculino , Femenino , Adulto , Termografía/métodos , Flujo Sanguíneo Regional , Voluntarios Sanos , Proyectos Piloto
2.
Cereb Circ Cogn Behav ; 7: 100363, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39252851

RESUMEN

The aim was to examine the effects of modalities of acute resistance exercise (RE) on cognition and hemodynamics including internal carotid artery (ICA) blood flow (BF). Twenty adults completed familiarization and experimental visits. One-repetition maximum (1RM) for bilateral leg extension was quantified, and baseline executive functioning was determined from three run-in visits. Subsequent visits included three randomized, volume-equated, acute exercise bouts of 30 %1RM+blood flow restriction (BFR), 30 %1RM, and 70 %1RM. Both 30 %1RM trials completed four sets of exercise (1 × 30, 3 × 15), and the 70 %1RM condition completed four sets of 8 repetitions. BFR was induced with 40 % of the pressure to occlude the femoral arteries. 11 min following each exercise, participants completed the Stroop and Shifting Attention Tests. Baseline and post-exercise values were used to calculate change scores. The resulting mean change scores were evaluated with mixed factorial ANOVAs. A p≤0.05 was considered significant. All measured outcome variables increased in response to exercise. The ANOVAs for cognitive scores indicated no significant (p>0.05) interactions. For cognitive flexibility and executive function index, there were main effects of Sex. Change scores of the females were significantly greater than the males for cognitive flexibility (7.6 ± 5.9 vs. -2.6 ± 8.4 au; p=0.007) and executive function index (7.4 ± 4.6 vs. -2.5 ± 6.5 au; p=0.001). For ICA BF, there was no significant interaction or any main effect. The females exhibited a smaller exercise-induced increase in blood pressure compared to the males (17.7 ± 5.9 vs. 11.0 ± 4.1 mmHg; p=0.010). Each RE modality yielded acute improvements in cognition, but only for females. There were no cognitive improvements related to BFR such that each RE bout yielded similar results.

3.
J Strength Cond Res ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39178106

RESUMEN

ABSTRACT: Lubiak, SM, Lawson, JE, Gonzalez Rojas, DH, Proppe, CE, Rivera, PM, Hammer, SM, Trevino, MA, Dinyer-McNeely, TK, Montgomery, TR, Olmos, AA, Sears, KN, Bergstrom, HC, Succi, PJ, Keller, JL, and Hill, EC. A moderate blood flow restriction pressure does not affect maximal strength or neuromuscular responses. J Strength Cond Res XX(X): 000-000, 2024-The purpose of this study was to examine the acute effects of blood flow restriction (BFR) applied at 60% of total arterial occlusion pressure (AOP) on maximal strength. Eleven college-aged female subjects completed two testing sessions of maximal unilateral concentric, isometric, and eccentric leg extension muscle actions performed with and without BFR. Separate 3 (mode [isometric, concentric, eccentric]) × 2 (condition [BFR, no BFR]) × 2 (visit [2, 3]) repeated-measures analysis of variances were used to examine mean differences in maximal strength, neuromuscular function, rating of perceived exertion (RPE), and pain. For maximal strength (collapsed across condition and visit), isometric (128.5 ± 22.7 Nm) and eccentric (114.5 ± 35.4 Nm) strength were greater than concentric maximal strength (89.3 ± 22.3 Nm) (p < 0.001-0.041). Muscle excitation relative (%) to isometric non-BFR was greater during the concentric (108.6 ± 31.5%) than during the eccentric (86.7 ± 29.2%) (p = 0.045) assessments but not different than isometric (93.4 ± 17.9%) (p = 0.109) assessments, collapsed across condition and visit. For RPE, there was an interaction such that RPE was greater during non-BFR (4.3 ± 1.7) than during BFR (3.7 ± 1.7) (p = 0.031) during the maximal concentric strength assessments. Furthermore, during maximal strength assessments performed with BFR, isometric RPE (5.8 ± 1.9) was greater than concentric (3.7 ± 1.7) (p = 0.005) and eccentric (4.6 ± 1.9) (p = 0.009) RPE. Finally, pain was greater during the isometric (2.8 ± 2.1 au) than during the concentric (1.8 ± 1.5 au) (p = 0.016), but not eccentric, maximal strength assessments (2.1 ± 1.6 au) (p = 0.126), collapsed across condition and visit. The application of BFR at 60% AOP did not affect concentric, isometric, or eccentric maximal strength or neuromuscular function. Trainers, clinicians, and researchers can prescribe exercise interventions relative to a restricted (when using a moderate AOP) or nonrestricted assessment of maximal strength.

4.
Eur J Appl Physiol ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162881

RESUMEN

PURPOSE: Resistance exercise can attenuate muscular impairments associated with multiple sclerosis (MS), and blood flow restriction (BFR) may provide a viable alternative to prescribing heavy training loads. The purpose of this investigation was to examine the progression of upper and lower body low-load (30% of one-repetition maximum [1RM]) resistance training (RT) with BFR applied intermittently during the exercise intervals (RT + BFR) versus volume-matched heavy-load (65% of 1RM) RT. METHODS: Men and women with MS (n = 16) were randomly assigned to low-load RT + BFR (applied intermittently) or heavy-load RT and completed 12 weeks (2 × /week) of RT that consisted of bilateral chest press, seated row, shoulder press, leg press, leg extension, and leg curl exercises. Exercise load, tonnage, and rating of perceived exertion were assessed at baseline and every 6 weeks. RESULTS: Training load increased to a greater extent and sometimes earlier for RT + BFR (57.7-106.3%) than heavy-load RT (42.3-54.3%) during chest press, seated row, and leg curl exercises, while there were similar increases (63.5-101.1%) for shoulder press, leg extension, and leg press exercises. Exercise tonnage was greater across all exercises for RT + BFR than heavy-load RT, although tonnage only increased during the chest press (70.7-80.0%) and leg extension (89.1%) exercises. Perceptions of exertion (4.8-7.2 au) and compliance (97.9-99.0%) were similar for both interventions. CONCLUSION: The training-induced increases in load, high compliance, and moderate levels of exertion suggested that RT + BFR and heavy-load RT are viable interventions among people with MS. RT + BFR may be a preferred modality if heavy loads are not well tolerated and/or to promote early-phase training responses.

5.
Microbiologyopen ; 13(3): e1412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38711353

RESUMEN

Cable bacteria, characterized by their multicellular filamentous growth, are prevalent in both freshwater and marine sediments. They possess the unique ability to transport electrons over distances of centimeters. Coupled with their capacity to fix CO2 and their record-breaking conductivity for biological materials, these bacteria present promising prospects for bioprocess engineering, including potential electrochemical applications. However, the cultivation of cable bacteria has been limited to their natural sediment, constraining their utility in production processes. To address this, our study designs synthetic sediment, drawing on ion exchange chromatography data from natural sediments and existing literature on the requirements of cable bacteria. We examined the effects of varying bentonite concentrations on water retention and the impacts of different sands. For the first time, we cultivated cable bacteria on synthetic sediment, specifically the freshwater strain Electronema aureum GS. This cultivation was conducted over 10 weeks in a specially developed sediment bioreactor, resulting in an increased density of cable bacteria in the sediment and growth up to a depth of 5 cm. The creation of this synthetic sediment paves the way for the reproducible cultivation of cable bacteria. It also opens up possibilities for future process scale-up using readily available components. This advancement holds significant implications for the broader field of bioprocess engineering.


Asunto(s)
Sedimentos Geológicos , Sedimentos Geológicos/microbiología , Reactores Biológicos/microbiología
6.
J Bodyw Mov Ther ; 38: 254-262, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38763567

RESUMEN

OBJECTIVES: The purpose of this study was to compare physiological responses to myofascial release (MFR) and passive limb movement (PLM). DESIGN: Nineteen (23 ± 2.6yrs) adults (10 men and 9 women) completed two experiments on separate days: MFR and PLM. Participation included collecting ultrasound images, blood pressure, and heart rate (HR) as well as performing a vascular occlusion test (VOT). The VOT assessed muscle tissue oxygenation (StO2) with near-infrared spectroscopy. Experiments consisted of moving the upper limb to release subtle barriers of resistance in the muscle/fascia (MFR) and passive, assisted range of motion (PLM). RESULTS: There was a significantly (p = 0.012) greater decrease in HR following MFR (-7.3 ± 5.2 BPM) than PLM (-1.3 ± 0.9 BPM). There was an equivalent change in brachial blood flow (-17.3 ± 23.0 vs. -11.9 ± 14.9 mL min-1; p = 0.37) and vascular conductance (-19.3 ± 31.1 vs. -12.4 ± 15.3 mL min-1 mmHg-1; p = 0.38). Microvascular responses differed between the experiments such that MFR exhibited greater area under the curve (AUC, 1503 ± 499.1%∙s-1 vs. 1203 ± 411.1%∙s-1; p = 0.021) and time to maximum StO2 (40.0 ± 8.4s vs. 35.8 ± 7.3s; p = 0.009). CONCLUSIONS: As evidenced by HR, MFR induced greater parasympathetic activity than PLM. The greater AUC and time to StO2max following MFR suggested a spillover effect to induce prolonged hyper-saturation. These results may be of interest to those investigating possible MFR-related rehabilitative benefits.


Asunto(s)
Frecuencia Cardíaca , Músculo Esquelético , Humanos , Masculino , Femenino , Frecuencia Cardíaca/fisiología , Adulto , Adulto Joven , Músculo Esquelético/fisiología , Músculo Esquelético/irrigación sanguínea , Presión Sanguínea/fisiología , Espectroscopía Infrarroja Corta , Rango del Movimiento Articular/fisiología , Extremidad Superior/fisiología , Flujo Sanguíneo Regional/fisiología , Consumo de Oxígeno/fisiología , Microcirculación/fisiología
7.
Physiol Meas ; 45(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38507792

RESUMEN

Objective. Surface mechanomyography (sMMG) can measure oscillations of the activated muscle fibers in three axes (i.e.X,Y, andZ-axes) and has been used to describe motor unit activation patterns (X-axis). The application of blood flow restriction (BFR) is common in exercise studies, but the cuff may restrict muscle fiber oscillations. Therefore, the purpose of this investigation was to examine the acute effects of submaximal, fatiguing exercise with and without BFR on sMMG amplitude in theX,Y, andZ-axes among female participants.Approach. Sixteen females (21 ± 1 years) performed two separate exercise bouts to volitional exhaustion that consisted of unilateral, submaximal (50% maximal voluntary isometric contraction [MVIC]) intermittent, isometric, leg extensions with and without BFR. sMMG was recorded and examined across percent time to exhaustion (%TTE) in 20% increments. Separate 2-way repeated measures ANOVA models were constructed: (condition [BFR, non-BFR]) × (time [20, 40, 60, 80, and 100% TTE]) to examine absolute (m·s-2) and normalized (% of pretest MVIC) sMMG amplitude in theX-(sMMG-X),Y-(sMMG-Y), andZ-(sMMG-Z) axes.Main results. The absolute sMMG-X amplitude responses were attenuated with the application of BFR (mean ± SD = 0.236 ± 0.138 m·s-2) relative to non-BFR (0.366 ± 0.199 m·s-2, collapsed across time) and for sMMG-Y amplitude at 60%-100% of TTE (BFR range = 0.213-0.232 m·s-2versus non-BFR = 0.313-0.445 m·s-2). Normalizing sMMG to pretest MVIC removed most, but not all the attenuation which was still evident for sMMG-Y amplitude at 100% of TTE between BFR (72.9 ± 47.2%) and non-BFR (98.9 ± 53.1%). Interestingly, sMMG-Z amplitude was not affected by the application of BFR and progressively decreased across %TTE (0.332 ± 0.167 m·s-2to 0.219 ± 0.104 m·s-2, collapsed across condition.)Significance. The application of BFR attenuated sMMG-X and sMMG-Y amplitude, although normalizing sMMG removed most of this attenuation. Unlike theXandY-axes, sMMG-Z amplitude was not affected by BFR and progressively decreased across each exercise bout potentially tracking the development of muscle fatigue.


Asunto(s)
Fatiga Muscular , Entrenamiento de Fuerza , Humanos , Femenino , Fatiga Muscular/fisiología , Ejercicio Físico/fisiología , Contracción Isométrica/fisiología , Flujo Sanguíneo Regional , Modalidades de Fisioterapia , Músculo Esquelético/fisiología , Electromiografía , Entrenamiento de Fuerza/métodos
8.
Microcirculation ; 31(4): e12848, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38281244

RESUMEN

OBJECTIVE: We examined sex-specific microvascular reactivity and hemodynamic responses under conditions of augmented resting blood flow induced by passive heating compared to normal blood flow. METHODS: Thirty-eight adults (19 females) completed a vascular occlusion test (VOT) on two occasions preceded by rest with or without passive heating in a randomized, counterbalanced order. Skeletal muscle tissue oxygenation (StO2, %) was assessed with near-infrared spectroscopy (NIRS), and the rate of desaturation and resaturation as well as maximal StO2 (StO2max) and prolonged hypersaturation (area under the curve, StO2AUC) were quantified. Before the VOT, brachial artery blood flow (BABF), vascular conductance, and relative BABF (BABF normalized to forearm lean mass) were determined. Sex × condition ANOVAs were used. A p-value ≤.05 was considered statistically significant. RESULTS: Twenty minutes of heating increased BABF compared to the control (102.9 ± 28.3 vs. 36.0 ± 20.9 mL min-1; p < .01). Males demonstrated greater BABF than females (91.9 ± 34.0 vs. 47.0 ± 19.1 mL min-1; p < .01). There was no sex difference in normalized BABF. There were no significant interactions for NIRS-VOT outcomes, but heat did increase the rate of desaturation (-0.140 ± 0.02 vs. -0.119 ± 0.03% s-1; p < .01), whereas regardless of condition, males exhibited greater rates of resaturation and StO2max than females. CONCLUSIONS: These results suggest that blood flow is not the primary factor causing sex differences in NIRS-VOT outcomes.


Asunto(s)
Microcirculación , Músculo Esquelético , Humanos , Femenino , Masculino , Adulto , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/fisiología , Microcirculación/fisiología , Hemodinámica , Caracteres Sexuales , Flujo Sanguíneo Regional/fisiología , Calor , Arteria Braquial/fisiología , Consumo de Oxígeno/fisiología , Espectroscopía Infrarroja Corta
9.
Am J Physiol Heart Circ Physiol ; 326(2): H346-H356, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038715

RESUMEN

The function of micro- and macrovessels within the peripheral vasculature has been identified as a target for the investigation of potential cardiovascular-based promoters of cognitive decline. However, little remains known regarding the interaction of the micro- and macrovasculature as it relates to cognitive function, especially in cognitively healthy individuals. Therefore, our purpose was to unravel peripheral factors that contribute to the association between age and processing speed. Ninety-nine individuals (51 men, 48 women) across the adult life span (19-81 yr) were used for analysis. Arterial stiffness was quantified as carotid-femoral pulse-wave velocity (cfPWV) and near-infrared spectroscopy assessed maximal tissue oxygenation (Sto2max) following a period of ischemia. Processing speed was evaluated with Trail Making Test (TMT) Parts A and B. Measures of central (cPP) and peripheral pulse pressure (pPP) were also collected. Moderated mediation analyses were conducted to determine contributions to the age and processing speed relation, and first-order partial correlations were used to assess associations while controlling for the linear effects of age. A P ≤ 0.05 was considered statistically significant. At low levels of Sto2max, there was a significant positive (b = 1.92; P = 0.005) effect of cfPWV on time to completion on TMT part A. In addition, cPP (P = 0.028) and pPP (P = 0.027) remained significantly related to part A when controlling for age. These results suggested that the peripheral microvasculature may be a valuable target for delaying cognitive decline, especially in currently cognitively healthy individuals. Furthermore, we reinforced current evidence that pulse pressure is a key endpoint for trials aimed at preventing or delaying the onset of cognitive decline.NEW & NOTEWORTHY Arterial stiffness partially mediates the association between age and processing speed in the presence of low microvascular function, as demarcated by maximum tissue oxygenation following ischemia. Central and peripheral pulse pressure remained associated with processing speed even after controlling for age. Our findings were derived from a sample that was determined to be cognitively healthy, which highlights the potential for these outcomes to be considered during trials aimed at the prevention of cognitive decline.


Asunto(s)
Longevidad , Rigidez Vascular , Masculino , Adulto , Humanos , Femenino , Velocidad de Procesamiento , Análisis de la Onda del Pulso , Presión Sanguínea , Isquemia
10.
Eur J Investig Health Psychol Educ ; 13(10): 2276-2289, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37887162

RESUMEN

Adults do not engage in enough physical activity. Investigating cognitive and physiological factors related to improving this behavior-and reducing health risks-remains a public health priority. Our objective was to assess whether cognitive flexibility influenced perceptions and choice of exercise programs and whether flexibility was associated with cardiovascular disease (CVD) risk factors. Independent sample groups of college-aged adults (18-24 yrs) participated in two studies. Data were collected on individuals' degree of cognitive flexibility (both self-reported and objectively measured), perceptions and choice of exercise programs, and health status markers known to be associated with CVD (vascular function, muscular strength, and body composition). Vascular function was assessed with a near-infrared spectroscopy device, strength was defined as handgrip, and body composition was estimated via digital circumferences. Self-reported flexibility reliably predicted individuals' choice of exercise program and perceptions of effort required for success on an exercise program. The relationships among CVD risk factors and objectively measured cognitive flexibility were not significant, demonstrating that identifying a healthy individual's degree of performance-based cognitive flexibility does not predict health status. Furthermore, although greater self-reported trait flexibility (rigidity) is known to predict higher (lower) likelihood of physical activity, this finding should not be extrapolated to also assume that flexibility (rigidity), as measured by objective cognitive tests, is associated with reduced CVD risk in healthy adults. We posit a rationale for how understanding cognitive flexibility and rigidity can play an impactful role in improving adherence to exercise prescriptions targeted to reducing risks.

11.
J Strength Cond Res ; 37(10): e546-e554, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37639655

RESUMEN

ABSTRACT: Wizenberg, AM, Gonzalez-Rojas, D, Rivera, PM, Proppe, CE, Laurel, KP, Stout, JR, Fukuda, DH, Billaut, F, Keller, JL, and Hill, EC. Acute effects of continuous and intermittent blood flow restriction on sprint interval performance and muscle oxygen responses. J Strength Cond Res 37(10): e546-e554, 2023-This investigation aimed to examine the acute effects of continuous and intermittent blood flow restriction (CBFR and IBFR, respectively) during sprint interval training (SIT) on muscle oxygenation, sprint performance, and ratings of perceived exertion (RPE). Fifteen men (22.6 ± 2.4 years; 176 ± 6.3 cm; 80.0 ± 12.6 kg) completed in random order a SIT session with CBFR, IBFR (applied during rest), and no blood flow restriction (NoBFR). Each SIT session consisted of two 30-second all-out sprint tests separated by 2 minutes. Peak power (PP), total work (TW), sprint decrement score (S dec ), RPE, and muscle oxygenation were measured during each sprint. A p value ≤0.05 was considered statistically significant. PP decreased to a greater extent from sprint 1 to sprint 2 during CBFR (25.5 ± 11.9%) and IBFR (23.4 ± 9.3%) compared with NoBFR (13.4 ± 8.6%). TW was reduced similarly (17,835.6 ± 966.2 to 12,687.2 ± 675.2 J) from sprint 1 to sprint 2 for all 3 conditions, but TW was lower (collapsed across time) for CBFR (14,320.7 ± 769.1 J) than IBFR (15,548.0 ± 840.5 J) and NoBFR (15,915.4 ± 771.5 J). There were no differences in S dec (84.3 ± 1.7%, 86.1 ± 1.5%, and 87.2 ± 1.1% for CBFR, IBFR, and NoBFR, respectively) or RPE, which increased from sprint 1 (8.5 ± 0.3) to sprint 2 (9.7 ± 0.1). Collective muscle oxygenation responses increased across time and were similar among conditions, whereas increases in deoxy[heme] and total[heme] were greatest for CBFR. Applying BFR during SIT induced greater decrements in PP, and CBFR resulted in greater decrements in work across repeated sprints. The larger increases in deoxy[heme] and total[heme] for CBFR suggested it may induce greater metabolite accumulation than IBFR and NoBFR when combined with SIT.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Músculos , Humanos , Masculino , Hemo , Oxígeno , Descanso , Adulto Joven
12.
J Appl Physiol (1985) ; 135(1): 3-14, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199783

RESUMEN

Men and women exhibit different near-infrared spectroscopy (NIRS) outcomes in response to vascular occlusion tests (VOT), which may be due to phenotypic characteristics or different degrees of desaturation during ischemia. The minimum skeletal muscle tissue oxygenation (StO2min) observed during a VOT may be the primary determinant of reactive hyperemic (RH) responses. Our purpose was to determine the contribution StO2min and participant characteristics including adipose tissue thickness (ATT), lean body mass (LBM), muscular strength, and limb circumference to NIRS-derived indexes of RH. Also, we aimed to determine if matching StO2min would eliminate NIRS-VOT sex differences. Thirty-one young adults completed one or two VOTs during which the vastus lateralis was continuously assessed for StO2. The men and women each completed a standard VOT with a 5-min ischemic phase. The men completed a second VOT with a shortened ischemic phase to produce a matching StO2min to the minimum of the women observed during the standard VOT. Mean sex differences were determined with t tests, and relative contributions were assessed with multiple regression and model comparison approaches. During the 5-min ischemic phase, the men exhibited greater upslopes (1.97 ± 0.66 vs. 1.23 ± 0.59%·s-1) and greater StO2max than the women (80.3 ± 4.17 vs. 76.2 ± 2.86%). Analysis revealed StO2min was a greater contributor to upslope than sex and/or ATT. For StO2max, sex was the only significant predictor (r2 = 0.26, men ∼4.09% > women). Experimentally matching StO2min did not eliminate the sex differences in upslope or StO2max, suggesting that characteristics other than the degree of desaturation primarily provoke sex differences in RH.NEW & NOTEWORTHY Men exhibit greater values of reactive hyperemia than women even when controlling for the magnitude of desaturation during transient ischemia. Factors other than the ischemic vasodilatory stimulus, such as skeletal muscle mass and quality, likely provoke the commonly reported sex differences in reactive hyperemia measured by near-infrared spectroscopy.


Asunto(s)
Hiperemia , Enfermedades Vasculares , Adulto Joven , Humanos , Masculino , Femenino , Espectroscopía Infrarroja Corta/métodos , Caracteres Sexuales , Isquemia , Enfermedades Vasculares/metabolismo , Músculo Esquelético/metabolismo , Microcirculación/fisiología , Consumo de Oxígeno/fisiología
13.
Med Sci Sports Exerc ; 55(5): 920-931, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36729632

RESUMEN

PURPOSE: The purpose of this study was to examine the physiological responses resulting from an acute blood flow restriction resistance exercise bout with two different cuff pressures in young, healthy men and women. METHODS: Thirty adults (18-30 yr) completed a bilateral leg extension blood flow restriction bout consisting of four sets (30-15-15-15 repetitions), with cuffs applied at pressures corresponding to 40% and 60% of the minimum arterial occlusion pressure (AOP) needed to completely collapse the femoral arteries. During each of these conditions (40% and 60% AOP), physiological measures of near-infrared spectroscopy (NIRS) and EMG amplitude (EMG AMP) were collected from the dominant or nondominant vastus lateralis. After each set, ratings of perceived exertion (RPE) were collected, whereas only at baseline and at the end of the bout, mean arterial pressure (MAP) was assessed. Separate mixed-factorial ANOVA models were used to examine mean differences in the change in EMG AMP and NIRS parameters during each set. The absolute RPE and MAP values were also examined with separate ANOVAs. A P value ≤0.05 was considered statistically significant. RESULTS: Regardless of sex or cuff pressure, the change in EMG AMP was lower in set 1 (14.8%) compared with the remaining sets (22.6%-27.0%). The 40% AOP condition elicited the greatest changes in oxy[heme] and deoxy[heme], while also providing lower RPEs. For MAP, there was an effect for time such that MAP increased from preexercise (87.5 ± 4.3 mm Hg) to postexercise (104.5 ± 4.1 mm Hg). CONCLUSIONS: The major findings suggested that the 40% AOP condition permitted the greatest amount of recovery during the interset rest. In addition, there did not seem to be any meaningful sex-related difference in this sample of young healthy adults.


Asunto(s)
Entrenamiento de Fuerza , Masculino , Humanos , Femenino , Adulto Joven , Entrenamiento de Fuerza/métodos , Hemodinámica , Músculo Cuádriceps , Arteria Femoral/fisiología , Hemo , Flujo Sanguíneo Regional/fisiología , Músculo Esquelético/fisiología , Presión Sanguínea/fisiología
14.
J Strength Cond Res ; 37(7): e405-e412, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36525527

RESUMEN

ABSTRACT: Salmon, OF, Housh, TJ, Hill, EC, Keller, JL, Anders, JPV, Johnson, GO, Schmidt, RJ, and Smith, CM. Changes in neuromuscular response patterns after 4 weeks of leg press training during isokinetic leg extensions. J Strength Cond Res 37(7): e405-e412, 2023-The purpose of this study was to identify velocity-specific changes in electromyographic root mean square (EMG RMS), EMG frequency (EMG MPF), mechanomyographic RMS (MMG RMS), and MMG MPF during maximal unilateral isokinetic muscle actions performed at 60° and 240°·s -1 velocities within the right and left vastus lateralis (VL) after 4 weeks of dynamic constant external resistance (DCER) bilateral leg press training. Twelve resistance-trained men (age: mean ± SD = 21.4 ± 3.6 years) visited the laboratory 3d·wk -1 to perform resistance training consisting of 3 sets of 10 DCER leg presses. Four, three-way analysis of variance were performed to evaluate changes in neuromuscular responses (EMG RMS, EMG MPF, MMG RMS, and MMG MPF) from the right and left VL during 1 single-leg maximal isokinetic leg extension performed at 60° and 240°·s -1 before and after 4 weeks of DCER leg press training ( p < 0.05). The results indicated a 36% increase in EMG RMS for the right leg, as well as a 23% increase in MMG RMS and 10% decrease in MMG MPF after training, collapsed across velocity and leg. In addition, EMG RMS was 65% greater in the right leg than the left leg following training, whereas EMG MPF was 11% greater for the left leg than the right leg throughout training. Thus, 4 weeks of DCER leg press training provides sufficient stimuli to alter the neuromuscular activation process of the VL but not velocity-specific neuromuscular adaptations in trained males.


Asunto(s)
Pierna , Músculo Esquelético , Masculino , Humanos , Músculo Esquelético/fisiología , Electromiografía/métodos , Pierna/fisiología , Contracción Muscular/fisiología , Torque
15.
Front Aging Neurosci ; 14: 980561, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092801

RESUMEN

African American/Black individuals have been excluded from several lines of prominent neuroscience research, despite exhibiting disproportionately higher risk factors associated with the onset and magnitude of neurodegeneration. Therefore, the objective of the current investigation was to examine potential relationships among brain derived neurotropic factor (BDNF), peripheral vascular function, and body composition with cognition in a sample of midlife, African American/Black individuals. Midlife adults (men: n = 3, 60 ± 4 years; women: n = 9, 58 ± 5 years) were invited to complete two baseline visits separated by 4 weeks. Peripheral vascular function was determined by venous occlusion plethysmography, a dual-energy X-ray absorptiometry was used to determine body composition, and plasma was collected to quantify BDNF levels. The CNS Vital Signs computer-based test was used to provide scores on numerous cognitive domains. The principal results included that complex attention (r = 0.629) and processing speed (r = 0.734) were significantly (p < 0.05) related to the plasma BDNF values. However, there was no significant (p > 0.05) relationship between any vascular measure and any cognitive domain or BDNF value. Secondary findings included the relationship between lean mass and peak hyperemia (r = 0.758) as well as total hyperemia (r = 0.855). The major conclusion derived from these results was that there is rationale for future clinical trials to use interventions targeting increasing BDNF to potentially improve cognition. Additionally, these results strongly suggest that clinicians aiming to improve cognitive health via improvements in the known risk factor of vascular function should consider interventions capable of promoting the size and function of skeletal muscle, especially in the African American/Black population.

16.
Hum Mov Sci ; 86: 103002, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36162383

RESUMEN

BACKGROUND: Antagonist activation may contribute to fatigue-induced decreases in torque while assisting in the maintenance of joint stability. This study utilized a reciprocal, slow velocity (60°·s-1) forearm flexion and extension fatiguing task to examine the contributions of coactivation to torque production at slow and moderate (180°·s-1) velocities, as well as during a maximal voluntary isometric contraction (MVIC). METHODS: Twelve recreationally active men (mean ± SD: age = 21.7 ± 1.6 years; body mass = 83.5 ± 8.8 kg; height = 179.4 ± 5.2 cm) completed isokinetic (60 and 180°·s-1) and isometric pre-testing of forearm flexion and extension, followed by 50 maximal, reciprocal, isokinetic muscle actions at 60°·s-1, followed by post-testing. The amplitude (AMP) of the electromyographic (EMG) signals from the biceps and triceps brachii were simultaneously recorded. Torque and EMG AMP were normalized to the corresponding values from the pre-testing peak torque movements. Repeated measures ANOVAs and pairwise comparisons were used to identify mean changes in torque, EMG AMP, and coactivation ratios. RESULTS: The torque analyses indicated greater (p < 0.03) decreases for 180°·s-1 (24%) and MVIC (23%) than 60°·s-1 (14%) for forearm flexion. For forearm extension, there were no differences (p > 0.05) in fatigability between velocities. For EMG AMP there were no changes (p > 0.05) from pre- to post-testing for any velocity or movement. There were no changes (p > 0.05) in the coactivation ratio for forearm flexion, but significant increases (13.6 ± 6.6 to 16.9 ± 6.0; p = 0.003) for forearm extension, collapsed across Velocity. CONCLUSIONS: There was velocity- and movement-specific fatigability for forearm flexion and extension. The parallel, fatigue-induced EMG AMP responses indicated that coactivation did not contribute to the decreases in torque and would not affect elbow joint stability.


Asunto(s)
Contracción Isométrica , Fatiga Muscular , Adulto , Humanos , Masculino , Adulto Joven , Electromiografía , Contracción Isométrica/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Torque
17.
Front Neurosci ; 16: 915405, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844216

RESUMEN

Alzheimer's disease and related dementias (ADRD) are an expanding worldwide crisis. In the absence of scientific breakthroughs, the global prevalence of ADRD will continue to increase as more people are living longer. Racial or ethnic minority groups have an increased risk and incidence of ADRD and have often been neglected by the scientific research community. There is mounting evidence that vascular insults in the brain can initiate a series of biological events leading to neurodegeneration, cognitive impairment, and ADRD. We are a group of researchers interested in developing and expanding ADRD research, with an emphasis on vascular contributions to dementia, to serve our local diverse community. Toward this goal, the primary objective of this review was to investigate and better understand health disparities in Alabama and the contributions of the social determinants of health to those disparities, particularly in the context of vascular dysfunction in ADRD. Here, we explain the neurovascular dysfunction associated with Alzheimer's disease (AD) as well as the intrinsic and extrinsic risk factors contributing to dysfunction of the neurovascular unit (NVU). Next, we ascertain ethnoregional health disparities of individuals living in Alabama, as well as relevant vascular risk factors linked to AD. We also discuss current pharmaceutical and non-pharmaceutical treatment options for neurovascular dysfunction, mild cognitive impairment (MCI) and AD, including relevant studies and ongoing clinical trials. Overall, individuals in Alabama are adversely affected by social and structural determinants of health leading to health disparities, driven by rurality, ethnic minority status, and lower socioeconomic status (SES). In general, these communities have limited access to healthcare and healthy food and other amenities resulting in decreased opportunities for early diagnosis of and pharmaceutical treatments for ADRD. Although this review is focused on the current state of health disparities of ADRD patients in Alabama, future studies must include diversity of race, ethnicity, and region to best be able to treat all individuals affected by ADRD.

18.
Environ Res ; 214(Pt 2): 113869, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35820656

RESUMEN

Traditional cooking with solid fuels (biomass, animal dung, charcoals, coal) creates household air pollution that leads to millions of premature deaths and disability worldwide each year. Exposure to household air pollution is highest in low- and middle-income countries. Using data from a stepped-wedge randomized controlled trial of a cookstove intervention among 230 households in Honduras, we analyzed the impact of household and personal variables on repeated 24-h measurements of fine particulate matter (PM2.5) and black carbon (BC) exposure. Six measurements were collected approximately six-months apart over the course of the three-year study. Multivariable mixed models explained 37% of variation in personal PM2.5 exposure and 49% of variation in kitchen PM2.5 concentrations. Additionally, multivariable models explained 37% and 47% of variation in personal and kitchen BC concentrations, respectively. Stove type, season, presence of electricity, primary stove location, kitchen enclosure type, stove use time, and presence of kerosene for lighting were all associated with differences in geometric mean exposures. Stove type explained the most variability of the included variables. In future studies of household air pollution, tracking the cooking behaviors and daily activities of participants, including outdoor exposures, may explain exposure variation beyond the household and personal variables considered here.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Animales , Carbono , Culinaria , Monitoreo del Ambiente , Honduras , Humanos , Material Particulado/análisis , Población Rural , Hollín
19.
Sci Rep ; 12(1): 11303, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35788635

RESUMEN

Aerosol emissions from wind instruments are a suspected route of transmission for airborne infectious diseases, such as SARS-CoV-2. We evaluated aerosol number emissions (from 0.25 to 35.15 µm) from 81 volunteer performers of both sexes and varied age (12 to 63 years) while playing wind instruments (bassoon, clarinet, flute, French horn, oboe, piccolo, saxophone, trombone, trumpet, and tuba) or singing. Measured emissions spanned more than two orders of magnitude, ranging in rate from < 8 to 1,815 particles s-1, with brass instruments, on average, producing 191% (95% CI 81-367%) more aerosol than woodwinds. Being male was associated with a 70% increase in emissions (vs. female; 95% CI 9-166%). Each 1 dBA increase in sound pressure level was associated with a 28% increase (95% CI 10-40%) in emissions from brass instruments; sound pressure level was not associated with woodwind emissions. Age was not a significant predictor of emissions. The use of bell covers reduced aerosol emissions from three brass instruments tested (trombone, tuba, and trumpet), with average reductions ranging from 53 to 73%, but not for the two woodwind instruments tested (oboe and clarinet). Results from this work can facilitate infectious disease risk management for the performing arts.


Asunto(s)
COVID-19 , Música , Adolescente , Adulto , Aerosoles , COVID-19/epidemiología , COVID-19/prevención & control , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2 , Sonido , Adulto Joven
20.
J Neurophysiol ; 128(1): 73-85, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35704398

RESUMEN

The purpose of this study was to examine the acute effects of low-load blood flow restriction (LLBFR) and low-load non-BFR (LL) on neuromuscular function after a bout of standardized fatiguing leg extension muscle actions. Fourteen men (mean age ± SD = 23 ± 4 yr) volunteered to participate in this investigation and randomly performed LLBFR and LL on separate days. Resistance exercise consisted of 75 isotonic unilateral leg extension muscle actions performed at 30% of one-repetition maximum. Before (pretest) and after (posttest) performance of each bout of exercise, strength and neural assessments were determined. There were no pretest to posttest differences between LLBFR and LL for maximal voluntary isometric contraction (MVIC) torque or V wave/M wave responses (muscle compound action potentials assessed during a superimposed MVIC muscle action), which exhibited decreases (collapsed across condition) of 41.2% and 26.2%, respectively. There were pretest to posttest decreases in peak twitch torque (36.0%) and surface electromyography amplitude (sEMG) (29.5%) for LLBFR but not LL and larger decreases in voluntary activation for LLBFR (11.3%) than for LL (4.5%). These findings suggested that LLBFR elicited greater fatigue-induced decreases in several indexes of neuromuscular function relative to LL. Despite this, both LLBFR and LL resulted in similar decrements in performance as assessed by maximal strength.NEW & NOTEWORTHY The application of blood flow restriction induces greater acute neuromuscular fatigue relative to nonrestricted conditions. Resistance exercise with blood flow restriction elicited a greater reduction in twitch responses. These neuromuscular differences might explain the more favorable adaptations achieved with blood flow restriction that are likely a function of metabolic stress and subsequent changes in efferent neural drive.


Asunto(s)
Fatiga Muscular , Entrenamiento de Fuerza , Humanos , Contracción Isométrica/fisiología , Masculino , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Flujo Sanguíneo Regional/fisiología , Entrenamiento de Fuerza/métodos , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...