Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(28): 11867-11875, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38952206

RESUMEN

Antibiotic resistance is a significant global concern, necessitating the development of either new antibiotics or advanced delivery methods. With this in mind, we report on the synthesis and characterisation of a new family of Metal-Organic Frameworks (MOFs), OnG6 MOFs, designed to act as multi-drug carriers for bacterial infection treatment. OnG6 is based on the pro-drug 4,4'-azodisalicylic acid (AZDH4), which in vivo produces two equivalents of para-aminosalicylic acid (ASA), a crucial drug for M. tuberculosis treatment. X-ray and computational studies revealed that OnG6 MOFs are mesoporous MOFs with etb topology and an [M2(AZD)] formula (M = Zn, OnG6-Zn; Mg, OnG6-Mg; Cu, OnG6-Cu; and Co, OnG6-Co), featuring 1-dimensional channel type pores of 25 Å diameter. OnG6 MOFs are the first reported MOFs bearing the ligand AZDH4, joining the family of mesoporous MOFs arranged in a honeycomb pattern. They absorb isoniazid (INH) and ciprofloxacin (CIPRO) with the former being a specific antibiotic for M. tuberculosis, and the latter being a broader-spectrum antibiotic. The stability of the MOFs and their capacity for antibiotic uptake depend on the nature of the metal ion, with OnG6-Mg demonstrating the highest drug absorption. The antimicrobial activity of these species was assessed against S. aureus and E. coli, revealing that the carriers containing CIPRO displayed optimal efficacy.


Asunto(s)
Portadores de Fármacos , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Estructuras Metalorgánicas/síntesis química , Portadores de Fármacos/química , Portadores de Fármacos/síntesis química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Ciprofloxacina/farmacología , Ciprofloxacina/química , Isoniazida/química , Isoniazida/farmacología , Escherichia coli/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Modelos Moleculares
2.
J Med Chem ; 67(4): 2321-2336, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38300987

RESUMEN

Bruton's tyrosine kinase (BTK), a member of the TEC family of kinases, is an essential effector of B-cell receptor (BCR) signaling. Chronic activation of BTK-mediated BCR signaling is a hallmark of many hematological malignancies, which makes it an attractive therapeutic target. Pharmacological inhibition of BTK enzymatic function is now a well-proven strategy for the treatment of patients with these malignancies. We report the discovery and characterization of NX-2127, a BTK degrader with concomitant immunomodulatory activity. By design, NX-2127 mediates the degradation of transcription factors IKZF1 and IKZF3 through molecular glue interactions with the cereblon E3 ubiquitin ligase complex. NX-2127 degrades common BTK resistance mutants, including BTKC481S. NX-2127 is orally bioavailable, exhibits in vivo degradation across species, and demonstrates efficacy in preclinical oncology models. NX-2127 has advanced into first-in-human clinical trials and achieves deep and sustained degradation of BTK following daily oral dosing at 100 mg.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Tirosina Quinasas , Humanos , Agammaglobulinemia Tirosina Quinasa , Inhibidores de Proteínas Quinasas/efectos adversos , Transducción de Señal
3.
Blood ; 141(13): 1584-1596, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36375120

RESUMEN

Bruton tyrosine kinase (BTK) is essential for B-cell receptor (BCR) signaling, a driver of chronic lymphocytic leukemia (CLL). Covalent inhibitors bind C481 in the active site of BTK and have become a preferred CLL therapy. Disease progression on covalent BTK inhibitors is commonly associated with C481 mutations. Here, we investigated a targeted protein degrader, NRX-0492, that links a noncovalent BTK-binding domain to cereblon, an adaptor protein of the E3 ubiquitin ligase complex. NRX-0492 selectively catalyzes ubiquitylation and proteasomal degradation of BTK. In primary CLL cells, NRX-0492 induced rapid and sustained degradation of both wild-type and C481 mutant BTK at half maximal degradation concentration (DC50) of ≤0.2 nM and DC90 of ≤0.5 nM, respectively. Sustained degrader activity was maintained for at least 24 hours after washout and was equally observed in high-risk (deletion 17p) and standard-risk (deletion 13q only) CLL subtypes. In in vitro testing against treatment-naïve CLL samples, NRX-0492 was as effective as ibrutinib at inhibiting BCR-mediated signaling, transcriptional programs, and chemokine secretion. In patient-derived xenografts, orally administered NRX-0492 induced BTK degradation and inhibited activation and proliferation of CLL cells in blood and spleen and remained efficacious against primary C481S mutant CLL cells collected from a patient progressing on ibrutinib. Oral bioavailability, >90% degradation of BTK at subnanomolar concentrations, and sustained pharmacodynamic effects after drug clearance make this class of targeted protein degraders uniquely suitable for clinical translation, in particular as a strategy to overcome BTK inhibitor resistance. Clinical studies testing this approach have been initiated (NCT04830137, NCT05131022).


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Agammaglobulinemia Tirosina Quinasa , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Xenoinjertos , Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico
4.
Proc Natl Acad Sci U S A ; 113(6): 1540-5, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26811472

RESUMEN

Most metazoan E3 ligases contain a signature RING domain that promotes the transfer of ubiquitin from the active site of E2 conjugating enzymes to lysine residues in substrates. Although these RING-E3s depend on E2 enzymes for catalysis, how they turn on their E2s at the right time and place remains poorly understood. Here we report a phosphorylation-dependent mechanism that ensures timely activation of the E2 Ube2S by its RING-E3, the anaphase-promoting complex (APC/C); while phosphorylation of a specific serine residue in the APC/C coactivator Cdc20 prevents delivery of Ube2S to the APC/C, removal of this mark by PP2A(B56) allows Ube2S to bind the APC/C and catalyze ubiquitin chain elongation. PP2A(B56) also stabilizes kinetochore-microtubule attachments to shut off the spindle checkpoint, suggesting that cells regulate the E2-E3 interplay to coordinate ubiquitination with critical events during cell division.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ubiquitina/metabolismo , Biocatálisis , Proteínas Cdc20/metabolismo , Células HeLa , Humanos , Cinetocoros/metabolismo , Fosforilación , Unión Proteica , Proteína Fosfatasa 2/metabolismo , Serina/metabolismo
5.
Mol Cell Biol ; 35(23): 3962-73, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26370512

RESUMEN

The c-Jun amino-terminal kinase (JNK) plays a role in inflammation, proliferation, apoptosis, and cell adhesion and cell migration by phosphorylating paxillin and ß-catenin. JNK phosphorylation downstream of AMP-activated protein kinase (AMPK) activation is required for high CO2 (hypercapnia)-induced Na,K-ATPase endocytosis in alveolar epithelial cells. Here, we provide evidence that during hypercapnia, JNK promotes the phosphorylation of LMO7b, a scaffolding protein, in vitro and in intact cells. LMO7b phosphorylation was blocked by exposing the cells to the JNK inhibitor SP600125 and by infecting cells with dominant-negative JNK or AMPK adenovirus. The knockdown of the endogenous LMO7b or overexpression of mutated LMO7b with alanine substitutions of five potential JNK phosphorylation sites (LMO7b-5SA) or only Ser-1295 rescued both LMO7b phosphorylation and the hypercapnia-induced Na,K-ATPase endocytosis. Moreover, high CO2 promoted the colocalization and interaction of LMO7b and the Na,K-ATPase α1 subunit at the plasma membrane, which were prevented by SP600125 or by transfecting cells with LMO7b-5SA. Collectively, our data suggest that hypercapnia leads to JNK-induced LMO7b phosphorylation at Ser-1295, which facilitates the interaction of LMO7b with Na,K-ATPase at the plasma membrane promoting the endocytosis of Na,K-ATPase in alveolar epithelial cells.


Asunto(s)
Endocitosis , Proteínas de Homeodominio/metabolismo , Hipercapnia/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Dióxido de Carbono/metabolismo , Línea Celular , Activación Enzimática , Proteínas de Homeodominio/análisis , Proteínas de Homeodominio/genética , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/análisis , Datos de Secuencia Molecular , Mutación , Fosforilación , Mapas de Interacción de Proteínas , Ratas , ATPasa Intercambiadora de Sodio-Potasio/análisis , Factores de Transcripción/análisis , Factores de Transcripción/genética
6.
Mol Cell ; 56(2): 232-245, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25306918

RESUMEN

Protein modification with ubiquitin chains is an essential signaling event catalyzed by E3 ubiquitin ligases. Most human E3s contain a signature RING domain that recruits a ubiquitin-charged E2 and a separate domain for substrate recognition. How RING-E3s can build polymeric ubiquitin chains while binding substrates and E2s at defined interfaces remains poorly understood. Here, we show that the RING-E3 APC/C catalyzes chain elongation by strongly increasing the affinity of its E2 for the distal acceptor ubiquitin in a growing conjugate. This function of the APC/C requires its coactivator as well as conserved residues of the E2 and ubiquitin. APC/C's ability to track the tip of an emerging conjugate is required for APC/C-substrate degradation and accurate cell division. Our results suggest that RING-E3s tether the distal ubiquitin of a growing chain in proximity to the active site of their E2s, allowing them to assemble polymeric conjugates without altering their binding to substrate or E2.


Asunto(s)
Subunidad Apc11 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Subunidad Apc2 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdc20/metabolismo , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina/genética , Dominio Catalítico , Proteínas Cdc20/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Activación Enzimática , Células HeLa , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño , Ubiquitina/biosíntesis , Ubiquitinación
7.
PLoS One ; 7(10): e46696, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056407

RESUMEN

Elevated CO(2) levels (hypercapnia) occur in patients with respiratory diseases and impair alveolar epithelial integrity, in part, by inhibiting Na,K-ATPase function. Here, we examined the role of c-Jun N-terminal kinase (JNK) in CO(2) signaling in mammalian alveolar epithelial cells as well as in diptera, nematodes and rodent lungs. In alveolar epithelial cells, elevated CO(2) levels rapidly induced activation of JNK leading to downregulation of Na,K-ATPase and alveolar epithelial dysfunction. Hypercapnia-induced activation of JNK required AMP-activated protein kinase (AMPK) and protein kinase C-ζ leading to subsequent phosphorylation of JNK at Ser-129. Importantly, elevated CO(2) levels also caused a rapid and prominent activation of JNK in Drosophila S2 cells and in C. elegans. Paralleling the results with mammalian epithelial cells, RNAi against Drosophila JNK fully prevented CO(2)-induced downregulation of Na,K-ATPase in Drosophila S2 cells. The importance and specificity of JNK CO(2) signaling was additionally demonstrated by the ability of mutations in the C. elegans JNK homologs, jnk-1 and kgb-2 to partially rescue the hypercapnia-induced fertility defects but not the pharyngeal pumping defects. Together, these data provide evidence that deleterious effects of hypercapnia are mediated by JNK which plays an evolutionary conserved, specific role in CO(2) signaling in mammals, diptera and nematodes.


Asunto(s)
Dióxido de Carbono/toxicidad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Alveolos Pulmonares/citología , Animales , Linfoma de Burkitt , Caenorhabditis elegans , Drosophila , Activación Enzimática/efectos de los fármacos , Células Epiteliales/metabolismo , Evolución Molecular , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Fosforilación/efectos de los fármacos , Proteína Quinasa C/metabolismo , Ratas , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
8.
Trends Cell Biol ; 21(11): 656-63, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21978762

RESUMEN

Modification of proteins with ubiquitin chains is an essential regulatory event in cell cycle control. Differences in the connectivity of ubiquitin chains are believed to result in distinct functional consequences for the modified proteins. Among eight possible homogenous chain types, canonical Lys48-linked ubiquitin chains have long been recognized to drive the proteasomal degradation of cell cycle regulators, and Lys48 is the only essential lysine residue of ubiquitin in yeast. It thus came as a surprise that in higher eukaryotes atypical K11-linked ubiquitin chains regulate the substrates of the anaphase-promoting complex and control progression through mitosis. We discuss recent findings that shed light on the assembly and function of K11-linked chains during cell division.


Asunto(s)
División Celular , Poliubiquitina/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Animales , Humanos , Multimerización de Proteína , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación
9.
J Cell Sci ; 123(Pt 8): 1343-51, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20332111

RESUMEN

Stimulation of Na(+)/K(+)-ATPase translocation to the cell surface increases active Na(+) transport, which is the driving force of alveolar fluid reabsorption, a process necessary to keep the lungs free of edema and to allow normal gas exchange. Here, we provide evidence that insulin increases alveolar fluid reabsorption and Na(+)/K(+)-ATPase activity by increasing its translocation to the plasma membrane in alveolar epithelial cells. Insulin-induced Akt activation is necessary and sufficient to promote Na(+)/K(+)-ATPase translocation to the plasma membrane. Phosphorylation of AS160 by Akt is also required in this process, whereas inactivation of the Rab GTPase-activating protein domain of AS160 promotes partial Na(+)/K(+)-ATPase translocation in the absence of insulin. We found that Rab10 functions as a downstream target of AS160 in insulin-induced Na(+)/K(+)-ATPase translocation. Collectively, these results suggest that Akt plays a major role in Na(+)/K(+)-ATPase intracellular translocation and thus in alveolar fluid reabsorption.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/enzimología , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Insulina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Líquidos Corporales/efectos de los fármacos , Líquidos Corporales/enzimología , Bovinos , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Proteínas de Unión al GTP rab/metabolismo
10.
Am J Physiol Lung Cell Mol Physiol ; 297(6): L1120-30, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19801454

RESUMEN

Patients with acute lung injury develop hypoxia, which may lead to lung dysfunction and aberrant tissue repair. Recent studies have suggested that epithelial-mesenchymal transition (EMT) contributes to pulmonary fibrosis. We sought to determine whether hypoxia induces EMT in alveolar epithelial cells (AEC). We found that hypoxia induced the expression of alpha-smooth muscle actin (alpha-SMA) and vimentin and decreased the expression of E-cadherin in transformed and primary human, rat, and mouse AEC, suggesting that hypoxia induces EMT in AEC. Both severe hypoxia and moderate hypoxia induced EMT. The reactive oxygen species (ROS) scavenger Euk-134 prevented hypoxia-induced EMT. Moreover, hypoxia-induced expression of alpha-SMA and vimentin was prevented in mitochondria-deficient rho(0) cells, which are incapable of ROS production during hypoxia. CoCl(2) and dimethyloxaloylglycine, two compounds that stabilize hypoxia-inducible factor (HIF)-alpha under normoxia, failed to induce alpha-SMA expression in AEC. Furthermore, overexpression of constitutively active HIF-1alpha did not induce alpha-SMA. However, loss of HIF-1alpha or HIF-2alpha abolished induction of alpha-SMA mRNA during hypoxia. Hypoxia increased the levels of transforming growth factor (TGF)-beta1, and preincubation of AEC with SB431542, an inhibitor of the TGF-beta1 type I receptor kinase, prevented the hypoxia-induced EMT, suggesting that the process was TGF-beta1 dependent. Furthermore, both ROS and HIF-alpha were necessary for hypoxia-induced TGF-beta1 upregulation. Accordingly, we have provided evidence that hypoxia induces EMT of AEC through mitochondrial ROS, HIF, and endogenous TGF-beta1 signaling.


Asunto(s)
Células Epiteliales/patología , Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/patología , Mesodermo/patología , Mitocondrias/metabolismo , Alveolos Pulmonares/patología , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular Transformada , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Hipoxia/metabolismo , Mesodermo/metabolismo , Ratones , Alveolos Pulmonares/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Factor de Crecimiento Transformador beta1/biosíntesis , Factor de Crecimiento Transformador beta1/genética
11.
Mol Cell Biol ; 29(13): 3455-64, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19380482

RESUMEN

Hypoxia promotes Na,K-ATPase endocytosis via protein kinase C zeta (PKC zeta)-mediated phosphorylation of the Na,K-ATPase alpha subunit. Here, we report that hypoxia leads to the phosphorylation of 5'-AMP-activated protein kinase (AMPK) at Thr172 in rat alveolar epithelial cells. The overexpression of a dominant-negative AMPK alpha subunit (AMPK-DN) construct prevented the hypoxia-induced endocytosis of Na,K-ATPase. The overexpression of the reactive oxygen species (ROS) scavenger catalase prevented hypoxia-induced AMPK activation. Moreover, hypoxia failed to activate AMPK in mitochondrion-deficient rho(0)-A549 cells, suggesting that mitochondrial ROS play an essential role in hypoxia-induced AMPK activation. Hypoxia-induced PKC zeta translocation to the plasma membrane and phosphorylation at Thr410 were prevented by the pharmacological inhibition of AMPK or by the overexpression of the AMPK-DN construct. We found that AMPK alpha phosphorylates PKC zeta on residue Thr410 within the PKC zeta activation loop. Importantly, the activation of AMPK alpha was necessary for hypoxia-induced AMPK-PKC zeta binding in alveolar epithelial cells. The overexpression of T410A mutant PKC zeta prevented hypoxia-induced Na,K-ATPase endocytosis, confirming that PKC zeta Thr410 phosphorylation is essential for this process. PKC zeta activation by AMPK is isoform specific, as small interfering RNA targeting the alpha1 but not the alpha2 catalytic subunit prevented PKC zeta activation. Accordingly, we provide the first evidence that hypoxia-generated mitochondrial ROS lead to the activation of the AMPK alpha1 isoform, which binds and directly phosphorylates PKC zeta at Thr410, thereby promoting Na,K-ATPase endocytosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Endocitosis/fisiología , Células Epiteliales/metabolismo , Hipoxia/metabolismo , Proteína Quinasa C/metabolismo , Alveolos Pulmonares/citología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Activación Enzimática , Células Epiteliales/citología , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocondrias/metabolismo , Fosforilación , Proteína Quinasa C/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , ATPasa Intercambiadora de Sodio-Potasio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...