Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
HGG Adv ; 5(2): 100279, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38389303

RESUMEN

We designed a massively parallel reporter assay (MPRA) in an Epstein-Barr virus transformed B cell line to directly characterize the potential for histone post-translational modifications, i.e., histone quantitative trait loci (hQTLs), expression QTLs (eQTLs), and variants on systemic lupus erythematosus (SLE) and autoimmune (AI) disease risk haplotypes to modulate regulatory activity in an allele-dependent manner. Our study demonstrates that hQTLs, as a group, are more likely to modulate regulatory activity in an MPRA compared with other variant classes tested, including a set of eQTLs previously shown to interact with hQTLs and tested AI risk variants. In addition, we nominate 17 variants (including 11 previously unreported) as putative causal variants for SLE and another 14 for various other AI diseases, prioritizing these variants for future functional studies in primary and immortalized B cells. Thus, we uncover important insights into the mechanistic relationships among genotype, epigenetics, and gene expression in SLE and AI disease phenotypes.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Lupus Eritematoso Sistémico , Humanos , Sitios de Carácter Cuantitativo/genética , Histonas/genética , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Lupus Eritematoso Sistémico/genética
2.
Nat Genet ; 55(12): 2025-2026, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38036786
3.
bioRxiv ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37745336

RESUMEN

Background/Purpose: Knowledge of the 3D genome is essential to elucidate genetic mechanisms driving autoimmune diseases. The 3D genome is distinct for each cell type, and it is uncertain whether cell lines faithfully recapitulate the 3D architecture of primary human cells or whether developmental aspects of the pediatric immune system require use of pediatric samples. We undertook a systematic analysis of B cells and B cell lines to compare 3D genomic features encompassing risk loci for juvenile idiopathic arthritis (JIA), systemic lupus (SLE), and type 1 diabetes (T1D). Methods: We isolated B cells from healthy individuals, ages 9-17. HiChIP was performed using CTCF antibody, and CTCF peaks were identified. CTCF loops within the pediatric were compared to three datasets: 1) self-called CTCF consensus peaks called within the pediatric samples, 2) ENCODE's publicly available GM12878 CTCF ChIP-seq peaks, and 3) ENCODE's primary B cell CTCF ChIPseq peaks from two adult females. Differential looping was assessed within the pediatric samples and each of the three peak datasets. Results: The number of consensus peaks called in the pediatric samples was similar to that identified in ENCODE's GM12878 and primary B cell datasets. We observed <1% of loops that demonstrated significantly differential looping between peaks called within the pediatric samples themselves and when called using ENCODE GM12878 peaks . Significant looping differences were even less when comparing loops of the pediatric called peaks to those of the ENCODE primary B cell peaks. When querying loops found in juvenile idiopathic arthritis, type 1 diabetes, or systemic lupus erythematosus risk haplotypes, we observed significant differences in only 2.2%, 1.0%, and 1.3% loops, respectively, when comparing peaks called within the pediatric samples and ENCODE GM12878 dataset. The differences were even less apparent when comparing loops called with the pediatric vs ENCODE adult primary B cell peak datasets.The 3D chromatin architecture in B cells is similar across pediatric, adult, and EBVtransformed cell lines. This conservation of 3D structure includes regions encompassing autoimmune risk haplotypes. Conclusion: Thus, even for pediatric autoimmune diseases, publicly available adult B cell and cell line datasets may be sufficient for assessing effects exerted in the 3D genomic space.

4.
bioRxiv ; 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37645944

RESUMEN

Objective: To systematically characterize the potential for histone post-translational modifications, i.e., histone quantitative trait loci (hQTLs), expression QTLs (eQTLs), and variants on systemic lupus erythematosus (SLE) and autoimmune (AI) disease risk haplotypes to modulate gene expression in an allele dependent manner. Methods: We designed a massively parallel reporter assay (MPRA) containing ~32K variants and transfected it into an Epstein-Barr virus transformed B cell line generated from an SLE case. Results: Our study expands our understanding of hQTLs, illustrating that epigenetic QTLs are more likely to contribute to functional mechanisms than eQTLs and other variant types, and a large proportion of hQTLs overlap transcription start sites (TSS) of noncoding RNAs. In addition, we nominate 17 variants (including 11 novel) as putative causal variants for SLE and another 14 for various other AI diseases, prioritizing these variants for future functional studies primary and immortalized B cells. Conclusion: We uncover important insights into the mechanistic relationships between genotype, epigenetics, gene expression, and SLE and AI disease phenotypes.

6.
RMD Open ; 8(2)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36456101

RESUMEN

OBJECTIVE: Sjögren's disease (SjD) is an autoimmune disease characterised by inflammatory destruction of exocrine glands. Patients with autoantibodies to Ro/SSA (SjDRo+) exhibit more severe disease. Long non-coding RNAs (lncRNAs) are a functionally diverse class of non-protein-coding RNAs whose role in autoimmune disease pathology has not been well characterised. METHODS: Whole blood RNA-sequencing (RNA-seq) was performed on SjD cases (n=23 Ro/SSA negative (SjDRo-); n=27 Ro/SSA positive (SjDRo+) and healthy controls (HCs; n=27). Bioinformatics and pathway analyses of differentially expressed (DE) transcripts (log2 fold change ≥2 or ≤0.5; padj<0.05) were used to predict lncRNA function. LINC01871 was characterised by RNA-seq analyses of HSB-2 cells with CRISPR-targeted LINC01871 deletion (LINC01871-/ -) and in vitro stimulation assays. RESULTS: Whole blood RNA-seq revealed autoantibody-specific transcription profiles and disproportionate downregulation of DE transcripts in SjD cases relative to HCs. Sixteen DE lncRNAs exhibited correlated expression with the interferon (IFN)-regulated gene, RSAD2, in SjDRo+ (r≥0.65 or ≤-0.6); four antisense lncRNAs exhibited IFN-regulated expression in immune cell lines. LINC01871 was upregulated in all SjD cases. RNA-seq and pathway analyses of LINC01871-/ - cells implicated roles in cytotoxic function, differentiation and IFNγ induction. LINC01871 was induced by IFNγ in a myeloid cell line and regulated by calcineurin/NFAT pathway and T cell receptor (TCR) signalling in primary human T cells. CONCLUSION: LINC01871 influences expression of many immune cell genes and growth factors, is IFNγ inducible, and regulated by calcineurin signalling and TCR ligand engagement. Altered LINC01871 expression may influence the dysregulated T cell inflammatory pathways implicated in SjD.


Asunto(s)
Enfermedades Autoinmunes , ARN Largo no Codificante , Síndrome de Sjögren , Humanos , Interferones , ARN Largo no Codificante/genética , Calcineurina , Antivirales , Síndrome de Sjögren/genética , Autoanticuerpos , Inmunidad , Receptores de Antígenos de Linfocitos T
8.
Front Genet ; 13: 1011965, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36199584

RESUMEN

TNFAIP3/A20 is a prominent autoimmune disease risk locus that is correlated with hypomorphic TNFAIP3 expression and exhibits complex chromatin architecture with over 30 predicted enhancers. This study aimed to functionally characterize an enhancer ∼55 kb upstream of the TNFAIP3 promoter marked by the systemic lupus erythematosus (SLE) risk haplotype index SNP, rs10499197. Allele effects of rs10499197, rs58905141, and rs9494868 were tested by EMSA and/or luciferase reporter assays in immune cell types. Co-immunoprecipitation, ChIP-qPCR, and 3C-qPCR were performed on patient-derived EBV B cells homozygous for the non-risk or SLE risk TNFAIP3 haplotype to assess haplotype-specific effects on transcription factor binding and chromatin regulation at the TNFAIP3 locus. This study found that the TNFAIP3 locus has a complex chromatin regulatory network that spans ∼1M bp from the promoter region of IL20RA to the 3' untranslated region of TNFAIP3. Functional dissection of the enhancer demonstrated co-dependency of the RelA/p65 and CEBPB binding motifs that, together, increase IL20RA and IFNGR1 expression and decreased TNFAIP3 expression in the context of the TNFAIP3 SLE risk haplotype through dynamic long-range interactions up- and downstream. Examination of SNPs in linkage disequilibrium (D' = 1.0) with rs10499197 identified rs9494868 as a functional SNP with risk allele-specific increase in nuclear factor binding and enhancer activation in vitro. In summary, this study demonstrates that SNPs carried on the ∼109 kb SLE risk haplotype facilitate hypermorphic IL20RA and IFNGR1 expression, while suppressing TNFAIP3 expression, adding to the mechanistic potency of this critically important locus in autoimmune disease pathology.

9.
Nat Commun ; 13(1): 4287, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896530

RESUMEN

Sjögren's disease is a complex autoimmune disease with twelve established susceptibility loci. This genome-wide association study (GWAS) identifies ten novel genome-wide significant (GWS) regions in Sjögren's cases of European ancestry: CD247, NAB1, PTTG1-MIR146A, PRDM1-ATG5, TNFAIP3, XKR6, MAPT-CRHR1, RPTOR-CHMP6-BAIAP6, TYK2, SYNGR1. Polygenic risk scores yield predictability (AUROC = 0.71) and relative risk of 12.08. Interrogation of bioinformatics databases refine the associations, define local regulatory networks of GWS SNPs from the 95% credible set, and expand the implicated gene list to >40. Many GWS SNPs are eQTLs for genes within topologically associated domains in immune cells and/or eQTLs in the main target tissue, salivary glands.


Asunto(s)
Estudio de Asociación del Genoma Completo , Síndrome de Sjögren , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple , Síndrome de Sjögren/genética
10.
Front Immunol ; 13: 881332, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720397

RESUMEN

Objective: Higher 25-hydroxyvitamin D (25(OH)D) levels have been associated with reduced risk for autoimmune diseases and are influenced by vitamin D metabolism genes. We estimated genetically-determined vitamin D levels by calculating a genetic risk score (GRS) and investigated whether the vitamin D GRS was associated with the presence of autoantibodies related to rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) in those at increased risk for developing RA and SLE, respectively. Methods: In this cross-sectional study, we selected autoantibody positive (aAb+) and autoantibody negative (aAb-) individuals from the Studies of the Etiologies of Rheumatoid Arthritis (SERA), a cohort study of first-degree relatives (FDRs) of individuals with RA (189 RA aAb+, 181 RA aAb-), and the Lupus Family Registry and Repository (LFRR), a cohort study of FDRs of individuals with SLE (157 SLE aAb+, 185 SLE aAb-). Five SNPs known to be associated with serum 25(OH)D levels were analyzed individually as well as in a GRS: rs4588 (GC), rs12785878 (NADSYN1), rs10741657 (CYP2R1), rs6538691 (AMDHD1), and rs8018720 (SEC23A). Results: Both cohorts had similar demographic characteristics, with significantly older and a higher proportion of males in the aAb+ FDRs. The vitamin D GRS was inversely associated with RA aAb+ (OR = 0.85, 95% CI = 0.74-0.99), suggesting a possible protective factor for RA aAb positivity in FDRs of RA probands. The vitamin D GRS was not associated with SLE aAb+ in the LFRR (OR = 1.09, 95% CI = 0.94-1.27). The SEC23A SNP was associated with RA aAb+ in SERA (OR = 0.65, 95% CI = 0.43-0.99); this SNP was not associated with SLE aAb+ in LFRR (OR = 1.41, 95% CI = 0.90 - 2.19). Conclusion: Genes associated with vitamin D levels may play a protective role in the development of RA aAbs in FDRs of RA probands, perhaps through affecting lifelong vitamin D status. The GRS and the SEC23A SNP may be of interest for future investigation in pre-clinical RA. In contrast, these results do not support a similar association in SLE FDRs, suggesting other mechanisms involved in the relationship between vitamin D and SLE aAbs not assessed in this study.


Asunto(s)
Artritis Reumatoide , Lupus Eritematoso Sistémico , Artritis Reumatoide/epidemiología , Artritis Reumatoide/genética , Autoanticuerpos , Estudios de Cohortes , Estudios Transversales , Humanos , Lupus Eritematoso Sistémico/epidemiología , Lupus Eritematoso Sistémico/genética , Masculino , Factores de Riesgo , Vitamina D , Vitaminas
11.
Arthritis Rheumatol ; 74(1): 163-173, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34279042

RESUMEN

OBJECTIVE: Genetic variants spanning UBE2L3 are associated with increased expression of the UBE2L3-encoded E2 ubiquitin-conjugating enzyme H7 (UbcH7), which facilitates activation of proinflammatory NF-κB signaling and susceptibility to autoimmune diseases. We undertook this study to delineate how genetic variants carried on the UBE2L3/YDJC autoimmune risk haplotype function to drive hypermorphic UBE2L3 expression. METHODS: We used bioinformatic analyses, electrophoretic mobility shift assays, and luciferase reporter assays to identify and functionally characterize allele-specific effects of risk variants positioned in chromatin accessible regions of immune cells. Chromatin conformation capture with quantitative polymerase chain reaction (3C-qPCR), chromatin immunoprecipitation (ChIP)-qPCR, and small interfering RNA (siRNA) knockdown assays were performed on patient-derived Epstein-Barr virus-transformed B cells homozygous for the UBE2L3/YDJC nonrisk or risk haplotype to determine if the risk haplotype increases UBE2L3 expression by altering the regulatory chromatin architecture in the region. RESULTS: Of the 7 prioritized variants, 5 demonstrated allele-specific increases in nuclear protein binding affinity and regulatory activity. High-throughput sequencing of chromosome conformation capture coupled with ChIP (HiChIP) and 3C-qPCR uncovered a long-range interaction between the UBE2L3 promoter (rs140490, rs140491, rs11089620) and the downstream YDJC promoter (rs3747093) that was strengthened in the presence of the UBE2L3/YDJC risk haplotype, and correlated with the loss of CCCTC-binding factor (CTCF) and gain of YY1 binding at the risk alleles. Depleting YY1 by siRNA disrupted the long-range interaction between the 2 promoters and reduced UBE2L3 expression. CONCLUSION: The UBE2L3/YDJC autoimmune risk haplotype increases UBE2L3 expression through strengthening a YY1-mediated interaction between the UBE2L3 and YDJC promoters.


Asunto(s)
Enfermedades Autoinmunes/genética , Factor de Unión a CCCTC/fisiología , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/fisiología , Factor de Transcripción YY1/fisiología , Regulación de la Expresión Génica , Variación Genética , Haplotipos , Humanos , Factores de Riesgo
12.
Genes (Basel) ; 12(12)2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34946847

RESUMEN

Systemic lupus erythematosus (SLE) is a chronic, multisystem, autoimmune inflammatory disease with genomic and non-genomic contributions to risk. We hypothesize that epigenetic factors are a significant contributor to SLE risk and may be informative for identifying pathogenic mechanisms and therapeutic targets. To test this hypothesis while controlling for genetic background, we performed an epigenome-wide analysis of DNA methylation in genomic DNA from whole blood in three pairs of female monozygotic (MZ) twins of European ancestry, discordant for SLE. Results were replicated on the same array in four cell types from a set of four Danish female MZ twin pairs discordant for SLE. Genes implicated by the epigenetic analyses were then evaluated in 10 independent SLE gene expression datasets from the Gene Expression Omnibus (GEO). There were 59 differentially methylated loci between unaffected and affected MZ twins in whole blood, including 11 novel loci. All but two of these loci were hypomethylated in the SLE twins relative to the unaffected twins. The genes harboring these hypomethylated loci exhibited increased expression in multiple independent datasets of SLE patients. This pattern was largely consistent regardless of disease activity, cell type, or renal tissue type. The genes proximal to CpGs exhibiting differential methylation (DM) in the SLE-discordant MZ twins and exhibiting differential expression (DE) in independent SLE GEO cohorts (DM-DE genes) clustered into two pathways: the nucleic acid-sensing pathway and the type I interferon pathway. The DM-DE genes were also informatically queried for potential gene-drug interactions, yielding a list of 41 drugs including a known SLE therapy. The DM-DE genes delineate two important biologic pathways that are not only reflective of the heterogeneity of SLE but may also correlate with distinct IFN responses that depend on the source, type, and location of nucleic acid molecules and the activated receptors in individual patients. Cell- and tissue-specific analyses will be critical to the understanding of genetic factors dysregulating the nucleic acid-sensing and IFN pathways and whether these factors could be appropriate targets for therapeutic intervention.


Asunto(s)
Metilación de ADN/genética , Enfermedades en Gemelos/genética , Interferones/genética , Lupus Eritematoso Sistémico/genética , Ácidos Nucleicos/genética , Transducción de Señal/genética , Gemelos Monocigóticos/genética , ADN/genética , Sistemas de Liberación de Medicamentos/métodos , Epigenómica/métodos , Femenino , Técnicas Genéticas , Humanos , Regiones Promotoras Genéticas/genética
13.
Genome Biol ; 21(1): 281, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213505

RESUMEN

BACKGROUND: Systemic lupus erythematosus (SLE) is a clinically heterogeneous autoimmune disease characterized by the development of anti-nuclear antibodies. Susceptibility to SLE is multifactorial, with a combination of genetic and environmental risk factors contributing to disease development. Like other polygenic diseases, a significant proportion of estimated SLE heritability is not accounted for by common disease alleles analyzed by SNP array-based GWASs. Death-associated protein 1 (DAP1) was implicated as a candidate gene in a previous familial linkage study of SLE and rheumatoid arthritis, but the association has not been explored further. RESULTS: We perform deep sequencing across the DAP1 genomic segment in 2032 SLE patients, and healthy controls, and discover a low-frequency functional haplotype strongly associated with SLE risk in multiple ethnicities. We find multiple cis-eQTLs embedded in a risk haplotype that progressively downregulates DAP1 transcription in immune cells. Decreased DAP1 transcription results in reduced DAP1 protein in peripheral blood mononuclear cells, monocytes, and lymphoblastoid cell lines, leading to enhanced autophagic flux in immune cells expressing the DAP1 risk haplotype. Patients with DAP1 risk allele exhibit significantly higher autoantibody titers and altered expression of the immune system, autophagy, and apoptosis pathway transcripts, indicating that the DAP1 risk allele mediates enhanced autophagy, leading to the survival of autoreactive lymphocytes and increased autoantibody. CONCLUSIONS: We demonstrate how targeted sequencing captures low-frequency functional risk alleles that are missed by SNP array-based studies. SLE patients with the DAP1 genotype have distinct autoantibody and transcription profiles, supporting the dissection of SLE heterogeneity by genetic analysis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Autoinmunidad/genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Lupus Eritematoso Sistémico/genética , Alelos , Artritis Reumatoide , Autofagia , Células Dendríticas , Regulación hacia Abajo , Expresión Génica , Perfilación de la Expresión Génica , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Leucocitos Mononucleares , Polimorfismo de Nucleótido Simple , Alineación de Secuencia
14.
Cytokine ; 132: 154631, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-30685201

RESUMEN

BACKGROUND/PURPOSE: High serum interferon alpha (IFN-α) is an important heritable phenotype in systemic lupus erythematosus (SLE) which is involved in primary disease pathogenesis. High vs. low levels of IFN-α are associated with disease severity and account for some of the biological heterogeneity between SLE patients. The aim of the study was to replicate and fine-map previously detected genetic associations with serum IFN-α in SLE. METHODS: We previously undertook a case-case genome-wide association study of SLE patients stratified by ancestry and extremes of phenotype in serum IFN-α. Single nucleotide polymorphisms (SNPs) in seven loci identified in this screen were selected for follow up in a large independent cohort of 1370 SLE patients (703 European-ancestry, 432 African ancestry, and 235 Amerindian ancestry). Each ancestral background was analyzed separately, and ancestry-informative markers were used to control for ancestry and admixture. RESULTS: We find a rare haplotype spanning the promoter region of EFNA5 that is strongly associated with serum IFN-α in both African-American and European-American SLE patients (OR = 3.0, p = 3.7 × 10-6). We also find SNPs in the PPM1H, PTPRM, and NRGN regions associated with IFN-α levels in European-American, Amerindian, and African-American SLE patients respectively. Many of these associations are within regulatory regions of the gene, suggesting an impact on transcription. CONCLUSION: This study demonstrates the power of molecular sub-phenotypes to reveal genetic factors involved in complex autoimmune disease. The distinct associations observed in different ancestral backgrounds emphasize the heterogeneity of molecular pathogenesis in SLE.


Asunto(s)
Interferón-alfa/sangre , Lupus Eritematoso Sistémico/genética , Efrina-A5/genética , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Lupus Eritematoso Sistémico/sangre , Polimorfismo de Nucleótido Simple
15.
Arthritis Care Res (Hoboken) ; 72(8): 1049-1056, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31199565

RESUMEN

OBJECTIVE: To describe the clinical and serologic manifestations of Sjögren's syndrome (SS) in ethnic groups of the US. METHODS: This was a cross-sectional study of 648 patients with primary SS: 20 African American (AA), 164 American Indian (AI), 426 European American (EA), and 38 patients of other races evaluated in a multidisciplinary Sjögren's International Collaborative Clinical Alliance research clinic. RESULTS: AA subjects comprised 3.1% of the SS cohort, much lower than the percentage of AA in the state of Oklahoma (P = 3.01 × E - 05), the US (P = 2.24E - 13), or a systemic lupus erythematosus (SLE) cohort at the same institution (P = 4.26 × 10E - 27). In contrast, the percentage of AI in the SS cohort (25.3%) was much higher than expected (P = 3.17E - 09 versus SLE cohort, P = 6.36 - 26 versus Oklahoma, and P = 8.14E - 96 versus US population). The SS classification criteria were similar between AA and EA, but subjects of AI ancestry had lower rates of abnormal tear and salivary flow, as well as anti-Ro/SSA and anti-La/SSB antibodies. Paradoxically, AI had higher levels of disease activity (mean ± SD European League Against Rheumatism Sjögren's Syndrome Disease Activity Index score 3.77 ± 4.78) in comparison to EA (2.90 ± 4.12; P = 0.011) and more extraglandular manifestations affecting mainly the articular and glandular domains. Meanwhile, AA patients were characterized by higher rates of hypergammaglobulinemia (odds ratio [OR] 1.39 [95% confidence interval (95% CI) 1.39-8.65]; P = 0.01), elevated erythrocyte sedimentation rate (ESR) (OR 3.95 [95% CI 1.46-9.95]; P = 0.009), and parotid enlargement (OR 4.40 [95% CI 1.49-13.07]; P = 0.02). CONCLUSION: AI are affected at high rates with SS but present with few classical features, potentially preventing timely diagnosis. In contrast to SLE, SS is infrequent and not more severe among AA, but the triad of hypergammaglobulinemia, increased ESR, and parotid enlargement warrants extra vigilance for lymphomagenesis.


Asunto(s)
Negro o Afroamericano/estadística & datos numéricos , Indígenas Norteamericanos/estadística & datos numéricos , Síndrome de Sjögren/etnología , Síndrome de Sjögren/epidemiología , Población Blanca/estadística & datos numéricos , Adulto , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oklahoma/epidemiología , Factores de Riesgo
16.
Arthritis Rheumatol ; 72(5): 780-790, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31804013

RESUMEN

OBJECTIVE: Genetic variants in the region of tumor necrosis factor-induced protein 3-interacting protein 1 (TNIP1) are associated with autoimmune disease and reduced TNIP1 gene expression. The aim of this study was to define the functional genetic mechanisms driving TNIP1 hypomorphic expression imparted by the systemic lupus erythematosus-associated TNIP1 H1 risk haplotype. METHODS: Dual luciferase expression and electrophoretic mobility shift assays were used to evaluate the allelic effects of 11 risk variants on enhancer function and nuclear protein binding in immune cell line models (Epstein-Barr virus [EBV]-transformed human B cells, Jurkat cells, and THP-1 cells), left in a resting state or stimulated with phorbol 12-myristate 13-acetate/ionomycin. HiChIP was used to define the regulatory 3-dimensional (3-D) chromatin network of the TNIP1 haplotype by detecting in situ long-range DNA contacts associated with H3K27ac-marked chromatin in EBV B cells. Then, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to determine the expression of genes within the 3-D chromatin network. RESULTS: Bioinformatics analyses of 50 single-nucleotide polymorphisms on the TNIP1 H1 risk haplotype identified 11 non-protein-coding variants with a high likelihood of influencing TNIP1 gene expression. Eight variants in EBV B cells, 5 in THP-1 cells, and 2 in Jurkat cells exhibited various allelic effects on enhancer activation, resulting in a cumulative suppressive effect on TNIP1 expression (net effect of risk variants -7.14 fold, -6.80 fold, and -2.44 fold, respectively; n > 3). Specifically, in EBV B cells, only 2 variants (rs10057690 and rs13180950) exhibited allele-specific loss of both enhancer activity and nuclear protein binding (each P < 0.01 relative to nonrisk alleles). In contrast, the rs10036748 risk allele reduced binding affinities of the transcriptional repressors basic helix-loop-helix family member 40/differentially expressed in chondrocytes 1 (bHLHe40/DEC1) (P < 0.05 relative to nonrisk alleles) and CREB-1 (P not significant) in EBV B cells, resulting in a gain of enhancer activity (P < 0.05). HiChIP and qRT-PCR analyses revealed that overall transcriptional repression of the TNIP1 haplotype extended to the neighboring genes DCTN4 and GMA2, both of which also showed decreased expression in the presence of the TNIP1 risk haplotype (P < 0.001 and P < 0.01, respectively, relative to the nonrisk haplotype); notably, it was found that these genes share a 3-D chromatin network. CONCLUSION: Hypomorphic TNIP1 expression results from the combined concordant and opposing effects of multiple risk variants carried on the TNIP1 risk haplotype, with the strongest regulatory effect in B lymphoid lineage cells. Furthermore, the TNIP1 risk haplotype effect extends to neighboring genes within a shared chromatin network.


Asunto(s)
Proteínas de Unión al ADN/genética , Lupus Eritematoso Sistémico/genética , Linfocitos B , Cromatina , Expresión Génica , Haplotipos , Humanos , Medición de Riesgo
17.
Ann Rheum Dis ; 78(9): 1235-1241, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31217170

RESUMEN

OBJECTIVE: Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with unknown aetiology. Epstein-Barr virus (EBV) is an environmental factor associated with SLE. EBV maintains latency in B cells with frequent reactivation measured by antibodies against viral capsid antigen (VCA) and early antigen (EA). In this study, we determined whether EBV reactivation and single nucleotide polymorphisms (SNPs) in EBV-associated host genes are associated with SLE transition. METHODS: SLE patient relatives (n=436) who did not have SLE at baseline were recontacted after 6.3 (±3.9) years and evaluated for interim transitioning to SLE (≥4 cumulative American College of Rheumatology criteria); 56 (13%) transitioned to SLE prior to the follow-up visit. At both visits, detailed demographic, environmental, clinical information and blood samples were obtained. Antibodies against viral antigens were measured by ELISA. SNPs in IL10, CR2, TNFAIP3 and CD40 genes were typed by ImmunoChip. Generalised estimating equations were used to test associations between viral antibody levels and transitioning to SLE. RESULTS: Mean baseline VCA IgG (4.879±1.797 vs 3.866±1.795, p=0.0003) and EA IgG (1.192±1.113 vs 0.7774±0.8484, p=0.0236) levels were higher in transitioned compared with autoantibody negative non-transitioned relatives. Increased VCA IgG and EA IgG were associated with transitioning to SLE (OR 1.28 95% CI 1.07 to 1.53, p=0.007, OR 1.43 95% CI 1.06 to 1.93, p=0.02, respectively). Significant interactions were observed between CD40 variant rs48100485 and VCA IgG levels and IL10 variant rs3024493 and VCA IgA levels in transitioning to SLE. CONCLUSION: Heightened serologic reactivation of EBV increases the probability of transitioning to SLE in unaffected SLE relatives.


Asunto(s)
Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Autoinmunidad , Infecciones por Herpesviridae/inmunología , Herpesvirus Humano 4/inmunología , Lupus Eritematoso Sistémico/inmunología , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática , Femenino , Estudios de Seguimiento , Infecciones por Herpesviridae/virología , Humanos , Lupus Eritematoso Sistémico/virología , Masculino , Persona de Mediana Edad , Factores de Riesgo
18.
EBioMedicine ; 42: 76-85, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30952617

RESUMEN

BACKGROUND: Autoimmune disease prevention requires tools to assess an individual's risk of developing a specific disease. One tool is disease-associated autoantibodies, which accumulate in an asymptomatic preclinical period. However, patients sometimes exhibit autoantibodies associated with a different disease classification. When and how these alternative autoantibodies first appear remain unknown. This cross-sectional study characterizes alternative autoimmunity, and associated genetic and environmental factors, in unaffected first-degree relatives (FDRs) of patients, who exhibit increased future risk for the same disease. METHODS: Samples (n = 1321) from disease-specific autoantibody-positive (aAb+) systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and type 1 diabetes (T1D) patients; and unaffected aAb+ and autoantibody-negative (aAb-) SLE and RA FDRs were tested for SLE, RA, and T1D aAbs, as well as anti-tissue transglutaminase, anti-cardiolipin and anti-thyroperoxidase. FDR SLE and RA genetic risk scores (GRS) were calculated. FINDINGS: Alternative autoimmunity occurred in SLE patients (56%) and FDRs (57·4%), RA patients (32·6%) and FDRs (34·8%), and T1D patients (43%). Expanded autoimmunity, defined as autoantibodies spanning at least two other diseases, occurred in 18·5% of SLE patients, 16·4% of SLE FDRs, 7·8% of RA patients, 5·3% of RA FDRs, and 10·8% of T1D patients. SLE FDRs were more likely to have alternative (odds ratio [OR] 2·44) and expanded (OR 3·27) autoimmunity than RA FDRs. Alternative and expanded autoimmunity were associated with several environmental exposures. Alternative autoimmunity was associated with a higher RA GRS in RA FDRs (OR 1·41), and a higher SLE GRS in aAb+ RA FDRs (OR 1·87), but not in SLE FDRs. INTERPRETATION: Autoimmunity commonly crosses disease-specific boundaries in systemic (RA, SLE) and organ-specific (T1D) autoimmune diseases. Alternative autoimmunity is more common in SLE FDRs than RA FDRs, and is influenced by genetic and environmental factors. These findings have substantial implications for preclinical disease pathogenesis and autoimmune disease prevention studies. FUND: NIH U01AI101981, R01AR051394, U19AI082714, P30AR053483, P30GM103510, U54GM104938, U01AI101934, R01AI024717, U01AI130830, I01BX001834, & U01HG008666.


Asunto(s)
Artritis Reumatoide/etiología , Autoinmunidad/genética , Predisposición Genética a la Enfermedad , Lupus Eritematoso Sistémico/etiología , Núcleo Familiar , Adulto , Anciano , Alelos , Artritis Reumatoide/diagnóstico , Autoanticuerpos/inmunología , Ambiente , Femenino , Frecuencia de los Genes , Humanos , Lupus Eritematoso Sistémico/diagnóstico , Masculino , Persona de Mediana Edad , Especificidad de Órganos/inmunología , Polimorfismo de Nucleótido Simple , Factores de Riesgo
19.
Genes Immun ; 20(4): 281-292, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29904099

RESUMEN

Eosinophilic esophagitis (EoE) is a chronic inflammatory disease of the esophagus triggered by immune hypersensitivity to food. Herein, we tested whether genetic risk factors for known, non-allergic, immune-mediated diseases, particularly those involving autoimmunity, were associated with EoE risk. We used the high-density Immunochip platform, encoding 200,000 genetic variants for major auto-immune disease. Accordingly, 1214 subjects with EoE of European ancestry and 3734 population controls were genotyped and assessed using data directly generated or imputed from the previously published GWAS. We found lack of association of EoE with the genetic variants in the major histocompatibility complex (MHC) class I, II, and III genes and nearly all other loci using a highly powered study design with dense genotyping throughout the locus. Importantly, we identified an EoE risk locus at 16p13 with genome-wide significance (Pcombined=2.05 × 10-9, odds ratio = 0.76-0.81). This region is known to encode for the genes CLEC16A, DEXI, and CIITI, which are expressed in immune cells and esophageal epithelial cells. Suggestive EoE risk were also seen 5q23 (intergenic) and 7p15 (JAZF1). Overall, we have identified an additional EoE risk locus at 16p13 and highlight a shared and unique genetic etiology of EoE with a spectrum of immune-associated diseases.


Asunto(s)
Cromosomas Humanos Par 16/genética , Esofagitis Eosinofílica/genética , Sitios Genéticos , Polimorfismo Genético , Proteínas de Unión al ADN/genética , Humanos , Lectinas Tipo C/genética , Proteínas de la Membrana/genética , Proteínas de Transporte de Monosacáridos/genética , Proteínas Nucleares/genética , Transactivadores/genética
20.
Hum Mol Genet ; 27(21): 3813-3824, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30085094

RESUMEN

Genetic variation within the major histocompatibility complex (MHC) contributes substantial risk for systemic lupus erythematosus, but high gene density, extreme polymorphism and extensive linkage disequilibrium (LD) have made fine mapping challenging. To address the problem, we compared two association techniques in two ancestrally diverse populations, African Americans (AAs) and Europeans (EURs). We observed a greater number of Human Leucocyte Antigen (HLA) alleles in AA consistent with the elevated level of recombination in this population. In EUR we observed 50 different A-C-B-DRB1-DQA-DQB multilocus haplotype sequences per hundred individuals; in the AA sample, these multilocus haplotypes were twice as common compared to Europeans. We also observed a strong narrow class II signal in AA as opposed to the long-range LD observed in EUR that includes class I alleles. We performed a Bayesian model choice of the classical HLA alleles and a frequentist analysis that combined both single nucleotide polymorphisms (SNPs) and classical HLA alleles. Both analyses converged on a similar subset of risk HLA alleles: in EUR HLA- B*08:01 + B*18:01 + (DRB1*15:01 frequentist only) + DQA*01:02 + DQB*02:01 + DRB3*02 and in AA HLA-C*17:01 + B*08:01 + DRB1*15:03 + (DQA*01:02 frequentist only) + DQA*02:01 + DQA*05:01+ DQA*05:05 + DQB*03:19 + DQB*02:02. We observed two additional independent SNP associations in both populations: EUR rs146903072 and rs501480; AA rs389883 and rs114118665. The DR2 serotype was best explained by DRB1*15:03 + DQA*01:02 in AA and by DRB1*15:01 + DQA*01:02 in EUR. The DR3 serotype was best explained by DQA*05:01 in AA and by DQB*02:01 in EUR. Despite some differences in underlying HLA allele risk models in EUR and AA, SNP signals across the extended MHC showed remarkable similarity and significant concordance in direction of effect for risk-associated variants.


Asunto(s)
Predisposición Genética a la Enfermedad , Lupus Eritematoso Sistémico/genética , Complejo Mayor de Histocompatibilidad/genética , Polimorfismo de Nucleótido Simple , Negro o Afroamericano/genética , Femenino , Estudios de Asociación Genética , Haplotipos , Humanos , Masculino , Modelos Genéticos , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA