Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(12): 20459-20470, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38859427

RESUMEN

When a hollow core fiber is drawn, the core and cladding holes within the internal cane geometry are pressurized with an inert gas to enable precise control over the internal microstructure of the fiber and counteract surface tension forces. Primarily by considering the temperature drop as the fiber passes through the furnace and the geometrical transformation of the internal microstructure from preform-to-fiber, we recently established that the gas pressure within the final 'as-drawn' fiber is substantially below atmospheric pressure. We have also established that slight changes in the gas refractive index within the core and surrounding cladding holes induced by changes in gas pressure are sufficient to significantly affect both the modality and loss of the fiber. Here we demonstrate, through both simulations and experimental measurements, that the combination of these effects leads to transient changes in the fiber's attenuation when the fibers are opened to atmosphere post-fabrication. It is important to account for this phenomenon for accurate fiber characterization, particularly when long lengths of fiber are drawn where it could take many weeks for every part of the internal microstructure to reach atmospheric pressure.

2.
Opt Express ; 30(24): 43317-43329, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36523032

RESUMEN

We demonstrate recent progress in the development of a Raman gas sensor using a single cladding ring anti-resonant hollow core micro-structured optical fiber (HC-ARF) and a low power pump source. The HC-ARF was designed specifically for low attenuation and wide bandwidth in the visible spectral region and provided low loss at both the pump wavelength (532 nm) and Stokes wavelengths up to a Raman shift of 5000 cm-1. A novel selective core pressurization scheme was also implemented to further reduce the confinement loss, improving the Raman signal enhancement by a factor of 1.9 compared to a standard fiber filling scheme. By exploiting longer lengths of fiber, direct detection of both methane and hydrogen at concentrations of 5 and 10 ppm respectively is demonstrated and a noise equivalent limit-of-detection of 0.15 ppm is calculated for methane.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...