Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Sci Rep ; 14(1): 18258, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107568

RESUMEN

Neural processing of rewarding stimuli involves several distinct regions, including the nucleus accumbens (NAc). The majority of NAc neurons are GABAergic projection neurons known as medium spiny neurons (MSNs). MSNs are broadly defined by dopamine receptor expression, but evidence suggests that a wider array of subtypes exist. To study MSN heterogeneity, we analyzed single-nucleus RNA sequencing data from the largest available rat NAc dataset. Analysis of 48,040 NAc MSN nuclei identified major populations belonging to the striosome and matrix compartments. Integration with mouse and human data indicated consistency across species and disease-relevance scoring using genome-wide association study results revealed potentially differential roles for MSN populations in substance use disorders. Additional high-resolution clustering identified 34 transcriptomically distinct subtypes of MSNs definable by a limited number of marker genes. Together, these data demonstrate the diversity of MSNs in the NAc and provide a basis for more targeted genetic manipulation of specific populations.


Asunto(s)
Núcleo Accumbens , Transcriptoma , Animales , Humanos , Ratones , Ratas , Núcleo Celular/metabolismo , Núcleo Celular/genética , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Neuronas Espinosas Medianas/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/citología , Análisis de la Célula Individual
2.
medRxiv ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39132487

RESUMEN

Somatoform traits, which manifest as persistent physical symptoms without a clear medical cause, are prevalent and pose challenges to clinical practice. Understanding the genetic basis of these disorders could improve diagnostic and therapeutic approaches. With publicly available summary statistics, we conducted a multivariate genome-wide association study (GWAS) and multi-omic analysis of four somatoform traits-fatigue, irritable bowel syndrome, pain intensity, and health satisfaction-in 799,429 individuals genetically similar to Europeans. Using genomic structural equation modeling, GWAS identified 134 loci significantly associated with a somatoform common factor, including 44 loci not significant in the input GWAS and 8 novel loci for somatoform traits. Gene-property analyses highlighted an enrichment of genes involved in synaptic transmission and enriched gene expression in 12 brain tissues. Six genes, including members of the CD300 family, had putatively causal effects mediated by protein abundance. There was substantial polygenic overlap (76-83%) between the somatoform and externalizing, internalizing, and general psychopathology factors. Somatoform polygenic scores were associated most strongly with obesity, Type 2 diabetes, tobacco use disorder, and mood/anxiety disorders in independent biobanks. Drug repurposing analyses suggested potential therapeutic targets, including MEK inhibitors. Mendelian randomization indicated potentially protective effects of gut microbiota, including Ruminococcus bromii. These biological insights provide promising avenues for treatment development.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39043921

RESUMEN

Co-occurring psychiatric, medical, and substance use disorders (SUDs) are common, but the complex pathways leading to such comorbidities are poorly understood. A greater understanding of genetic influences on this phenomenon could inform precision medicine efforts. We used the Yale-Penn dataset, a cross-sectional sample enriched for individuals with SUDs, to examine pleiotropic effects of genetic liability for psychiatric and somatic traits. Participants completed an in-depth interview that provides information on demographics, environment, medical illnesses, and psychiatric and SUDs. Polygenic scores (PGS) for psychiatric disorders and somatic traits were calculated in European-ancestry (EUR; n = 5691) participants and, when discovery datasets were available, for African-ancestry (AFR; n = 4918) participants. Phenome-wide association studies (PheWAS) were then conducted. In AFR participants, the only PGS with significant associations was bipolar disorder (BD), all of which were with substance use phenotypes. In EUR participants, PGS for major depressive disorder (MDD), generalized anxiety disorder (GAD), post-traumatic stress disorder (PTSD), schizophrenia (SCZ), body mass index (BMI), coronary artery disease (CAD), and type 2 diabetes (T2D) all showed significant associations, the majority of which were with phenotypes in the substance use categories. For instance, PGSMDD was associated with over 200 phenotypes, 15 of which were depression-related (e.g., depression criterion count), 55 of which were other psychiatric phenotypes, and 126 of which were substance use phenotypes; and PGSBMI was associated with 138 phenotypes, 105 of which were substance related. Genetic liability for psychiatric and somatic traits is associated with numerous phenotypes across multiple categories, indicative of the broad genetic liability of these traits.

4.
Science ; 385(6706): eadj1182, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39024449

RESUMEN

One of the justifiable criticisms of human genetic studies is the underrepresentation of participants from diverse populations. Lack of inclusion must be addressed at-scale to identify causal disease factors and understand the genetic causes of health disparities. We present genome-wide associations for 2068 traits from 635,969 participants in the Department of Veterans Affairs Million Veteran Program, a longitudinal study of diverse United States Veterans. Systematic analysis revealed 13,672 genomic risk loci; 1608 were only significant after including non-European populations. Fine-mapping identified causal variants at 6318 signals across 613 traits. One-third (n = 2069) were identified in participants from non-European populations. This reveals a broadly similar genetic architecture across populations, highlights genetic insights gained from underrepresented groups, and presents an extensive atlas of genetic associations.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Veteranos , Humanos , Masculino , Variación Genética , Estudios Longitudinales , Polimorfismo de Nucleótido Simple , Estados Unidos , United States Department of Veterans Affairs , Femenino
5.
medRxiv ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39072016

RESUMEN

Recent genome-wide association studies (GWAS) have revealed shared genetic components among alcohol, opioid, tobacco and cannabis use disorders. However, the extent of the underlying shared causal variants and effector genes, along with their cellular context, remain unclear. We leveraged our existing 3D genomic datasets comprising high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq and RNA-seq across >50 diverse human cell types to focus on genomic regions that coincide with GWAS loci. Using stratified LD regression, we determined the proportion of genomewide SNP heritability attributable to the features assayed across our cell types by integrating recent GWAS summary statistics for the relevant traits: alcohol use disorder (AUD), tobacco use disorder (TUD), opioid use disorder (OUD) and cannabis use disorder (CanUD). Statistically significant enrichments (P<0.05) were observed in 14 specific cell types, with heritability reaching 9.2-fold for iPSC-derived cortical neurons and neural progenitors, confirming that they are crucial cell types for further functional exploration. Additionally, several pancreatic cell types, notably pancreatic beta cells, showed enrichment for TUD, with heritability enrichments up to 4.8-fold, suggesting genomic overlap with metabolic processes. Further investigation revealed significant positive genetic correlations between T2D with both TUD and CanUD (FDR<0.05) and a significant negative genetic correlation with AUD. Interestingly, after partitioning the heritability for each cell type's cis-regulatory elements, the correlation between T2D and TUD for pancreatic beta cells was greater (r=0.2) than the global genetic correlation value. Our study provides new genomic insights into substance use disorders and implicates cell types where functional follow-up studies could reveal causal variant-gene mechanisms underpinning these disorders.

6.
Am J Drug Alcohol Abuse ; : 1-11, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018668

RESUMEN

Background: Substance use disorders (SUDs) are heterogeneous across multiple functional domains. Various frameworks posit that domains (e.g., executive function) contribute to the persistence of SUDs; however, the domains identified in different studies vary.Objectives: We used factor analysis to identify the underlying latent domains present in a large sample (N = 5,244, 55.8% male) with a variety of SUDs to yield findings more generalizable than studies with a narrower focus.Method: Participants (1,384 controls and 3,860 participants with one or more SUDs including alcohol, cocaine, cannabis, and/or opioid use disorders) completed the Semi-Structured Assessment for Drug Dependence and Alcoholism, the NEO Personality Inventory, and the Wisconsin Card Sorting Test. Exploratory factor analysis (EFA) and fit indices (root mean-squared error of approximation (RMSEA), Comparative Fit Index (CFI), and Tucker-Lewis Index (TLI)) were used to examine different latent variable models. A multiple indicators, multiple causes (MIMIC) approach-tested associations of the latent variables with sociodemographics, substance use, and a history of abuse/neglect.Results: A six-factor model (predominant alcohol, predominant cocaine, predominant opioid, externalizing, personality, and executive function) provided the best fit [RMSEA = 0.063 (90% CI 0.060, 0.066), CFI = 0.98, TLI = 0.96]. All factors were moderately correlated (coefficient = 0.25-0.55, p < .05) with the exception of executive function. MIMIC analysis revealed different patterns of associations (all p < .0001) with sociodemographics, substance use, and a history of abuse/neglect among the factors.Conclusions: The domains identified, particularly executive function, were parallel to those observed previously. These factors underscore the heterogeneous nature of SUDs and may be useful in developing more targeted clinical interventions.

7.
bioRxiv ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38826289

RESUMEN

Neural processing of rewarding stimuli involves several distinct regions, including the nucleus accumbens (NAc). The majority of NAc neurons are GABAergic projection neurons known as medium spiny neurons (MSNs). MSNs are broadly defined by dopamine receptor expression, but evidence suggests that a wider array of subtypes exist. To study MSN heterogeneity, we analyzed single-nucleus RNA sequencing data from the largest available rat NAc dataset. Analysis of 48,040 NAc MSN nuclei identified major populations belonging to the striosome and matrix compartments. Integration with mouse and human data indicated consistency across species and disease-relevance scoring using genome-wide association study results revealed potentially differential roles for MSN populations in substance use disorders. Additional high-resolution clustering identified 34 transcriptomically distinct subtypes of MSNs definable by a limited number of marker genes. Together, these data demonstrate the diversity of MSNs in the NAc and provide a basis for more targeted genetic manipulation of specific populations.

8.
Mol Autism ; 15(1): 27, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877467

RESUMEN

BACKGROUND: Positive assortative mating (AM) in several neuropsychiatric traits, including autism, has been noted. However, it is unknown whether the pattern of AM is different in phenotypically defined autism subgroups [e.g., autism with and without intellectually disability (ID)]. It is also unclear what proportion of the phenotypic AM can be explained by the genetic similarity between parents of children with an autism diagnosis, and the consequences of AM on the genetic structure of the population. METHODS: To address these questions, we analyzed two family-based autism collections: the Simons Foundation Powering Autism Research for Knowledge (SPARK) (1575 families) and the Simons Simplex Collection (SSC) (2283 families). RESULTS: We found a similar degree of phenotypic and ancestry-related AM in parents of children with an autism diagnosis regardless of the presence of ID. We did not find evidence of AM for autism based on autism polygenic scores (PGS) (at a threshold of |r|> 0.1). The adjustment of ancestry-related AM or autism PGS accounted for only 0.3-4% of the fractional change in the estimate of the phenotypic AM. The ancestry-related AM introduced higher long-range linkage disequilibrium (LD) between single nucleotide polymorphisms (SNPs) on different chromosomes that are highly ancestry-informative compared to SNPs that are less ancestry-informative (D2 on the order of 1 × 10-5). LIMITATIONS: We only analyzed participants of European ancestry, limiting the generalizability of our results to individuals of non-European ancestry. SPARK and SSC were both multicenter studies. Therefore, there could be ancestry-related AM in SPARK and SSC due to geographic stratification. The study participants from each site were unknown, so we were unable to evaluate for geographic stratification. CONCLUSIONS: This study showed similar patterns of AM in autism with and without ID, and demonstrated that the common genetic influences of autism are likely relevant to both autism groups. The adjustment of ancestry-related AM and autism PGS accounted for < 5% of the fractional change in the estimate of the phenotypic AM. Future studies are needed to evaluate if the small increase of long-range LD induced by ancestry-related AM has impact on the downstream analysis.


Asunto(s)
Trastorno Autístico , Desequilibrio de Ligamiento , Fenotipo , Humanos , Trastorno Autístico/genética , Masculino , Femenino , Herencia Multifactorial , Niño , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Adulto , Discapacidad Intelectual/genética
9.
Nat Hum Behav ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834750

RESUMEN

Adverse childhood events (ACEs) contribute to the development of mood and anxiety disorders and substance dependence. However, the extent to which these effects are direct or indirect and whether genetic risk moderates them is unclear. We examined associations among ACEs, mood/anxiety disorders and substance dependence in 12,668 individuals (44.9% female, 42.5% African American/Black, 42.1% European American/white). Using latent variables for each phenotype, we modelled direct and indirect associations of ACEs with substance dependence, mediated by mood/anxiety disorders (the forward or 'self-medication' model) and of ACEs with mood/anxiety disorders, mediated by substance dependence (the reverse or 'substance-induced' model). In a subsample, we tested polygenic scores for the substance dependence and mood/anxiety disorder factors as moderators in the mediation models. Although there were significant indirect paths in both directions, mediation by mood/anxiety disorders (the forward model) was greater than that by substance dependence (the reverse model). Greater genetic risk for substance use disorders was associated with a weaker direct association between ACEs and substance dependence in both ancestry groups (reflecting gene × environment interactions) and a weaker indirect association in European-ancestry individuals (reflecting moderated mediation). We found greater evidence that substance dependence reflects self-medication of mood/anxiety disorders than that mood/anxiety disorders are substance induced. Among individuals at higher genetic risk for substance dependence, ACEs were less associated with that outcome. Following exposure to ACEs, multiple pathways appear to underlie the associations between mood/anxiety disorders and substance dependence. Specification of these pathways could inform individually targeted prevention and treatment approaches.

11.
medRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38798430

RESUMEN

Importance: Recently, the Food and Drug Administration gave pre-marketing approval to algorithm based on its purported ability to identify genetic risk for opioid use disorder. However, the clinical utility of the candidate genes comprising the algorithm has not been independently demonstrated. Objective: To assess the utility of 15 variants in candidate genes from an algorithm intended to predict opioid use disorder risk. Design: This case-control study examined the association of 15 candidate genetic variants with risk of opioid use disorder using available electronic health record data from December 20, 1992 to September 30, 2022. Setting: Electronic health record data, including pharmacy records, from Million Veteran Program participants across the United States. Participants: Participants were opioid-exposed individuals enrolled in the Million Veteran Program (n = 452,664). Opioid use disorder cases were identified using International Classification of Disease diagnostic codes, and controls were individuals with no opioid use disorder diagnosis. Exposures: Number of risk alleles present across 15 candidate genetic variants. Main Outcome and Measures: Predictive performance of 15 genetic variants for opioid use disorder risk assessed via logistic regression and machine learning models. Results: Opioid exposed individuals (n=33,669 cases) were on average 61.15 (SD = 13.37) years old, 90.46% male, and had varied genetic similarity to global reference panels. Collectively, the 15 candidate genetic variants accounted for 0.4% of variation in opioid use disorder risk. The accuracy of the ensemble machine learning model using the 15 genes as predictors was 52.8% (95% CI = 52.1 - 53.6%) in an independent testing sample. Conclusions and Relevance: Candidate genes that comprise the approved algorithm do not meet reasonable standards of efficacy in predicting opioid use disorder risk. Given the algorithm's limited predictive accuracy, its use in clinical care would lead to high rates of false positive and negative findings. More clinically useful models are needed to identify individuals at risk of developing opioid use disorder.

13.
medRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766259

RESUMEN

The etiology of substance use disorders (SUDs) and psychiatric disorders reflects a combination of both transdiagnostic (i.e., common) and disorder-level (i.e., independent) genetic risk factors. We applied genomic structural equation modeling to examine these genetic factors across SUDs, psychotic, mood, and anxiety disorders using genome-wide association studies (GWAS) of European- (EUR) and African-ancestry (AFR) individuals. In EUR individuals, transdiagnostic genetic factors represented SUDs (143 lead single nucleotide polymorphisms [SNPs]), psychotic (162 lead SNPs), and mood/anxiety disorders (112 lead SNPs). We identified two novel SNPs for mood/anxiety disorders that have probable regulatory roles on FOXP1, NECTIN3, and BTLA genes. In AFR individuals, genetic factors represented SUDs (1 lead SNP) and psychiatric disorders (no significant SNPs). The SUD factor lead SNP, although previously significant in EUR- and cross-ancestry GWAS, is a novel finding in AFR individuals. Shared genetic variance accounted for overlap between SUDs and their psychiatric comorbidities, with second-order GWAS identifying up to 12 SNPs not significantly associated with either first-order factor in EUR individuals. Finally, common and independent genetic effects showed different associations with psychiatric, sociodemographic, and medical phenotypes. For example, the independent components of schizophrenia and bipolar disorder had distinct associations with affective and risk-taking behaviors, and phenome-wide association studies identified medical conditions associated with tobacco use disorder independent of the broader SUDs factor. Thus, combining transdiagnostic and disorder-level genetic approaches can improve our understanding of co-occurring conditions and increase the specificity of genetic discovery, which is critical for psychiatric disorders that demonstrate considerable symptom and etiological overlap.

14.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746311

RESUMEN

Substance Use Disorders (SUDs) manifest as persistent drug-seeking behavior despite adverse consequences, with Alcohol Use Disorder (AUD) and Opioid Use Disorder (OUD) representing prevalent forms associated with significant mortality rates and economic burdens. The co-occurrence of AUD and OUD is common, necessitating a deeper comprehension of their intricate interactions. While the causal link between these disorders remains elusive, shared genetic factors are hypothesized. Leveraging public datasets, we employed genomic and transcriptomic analyses to explore conserved and distinct molecular pathways within the dorsolateral prefrontal cortex associated with AUD and OUD. Our findings unveil modest transcriptomic overlap at the gene level between the two disorders but substantial convergence on shared biological pathways. Notably, these pathways predominantly involve inflammatory processes, synaptic plasticity, and key intracellular signaling regulators. Integration of transcriptomic data with the latest genome-wide association studies (GWAS) for problematic alcohol use (PAU) and OUD not only corroborated our transcriptomic findings but also confirmed the limited shared heritability between the disorders. Overall, our study indicates that while alcohol and opioids induce diverse transcriptional alterations at the gene level, they converge on select biological pathways, offering promising avenues for novel therapeutic targets aimed at addressing both disorders simultaneously.

15.
Nat Hum Behav ; 8(6): 1177-1193, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38632388

RESUMEN

Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviours and although strides have been made using genome-wide association studies to identify risk variants, most variants identified have been for nicotine consumption, rather than TUD. Here we leveraged four US biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records) in 653,790 individuals (495,005 European, 114,420 African American and 44,365 Latin American) and data from UK Biobank (ncombined = 898,680). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviours in children and hundreds of medical outcomes, including HIV infection, heart disease and pain. This work furthers our biological understanding of TUD and establishes electronic health records as a source of phenotypic information for studying the genetics of TUD.


Asunto(s)
Tabaquismo , Humanos , Tabaquismo/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Estados Unidos/epidemiología , Masculino , Femenino , Registros Electrónicos de Salud
16.
medRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38645045

RESUMEN

There is considerable comorbidity across externalizing and internalizing behavior dimensions of psychopathology. We applied genomic structural equation modeling (gSEM) to genome-wide association study (GWAS) summary statistics to evaluate the factor structure of externalizing and internalizing psychopathology across 16 traits and disorders among European-ancestry individuals (n's = 16,400 to 1,074,629). We conducted GWAS on factors derived from well-fitting models. Downstream analyses served to identify biological mechanisms, explore drug repurposing targets, estimate genetic overlap between the externalizing and internalizing spectra, and evaluate causal effects of psychopathology liability on physical health. Both a correlated factors model, comprising two factors of externalizing and internalizing risk, and a higher-order single-factor model of genetic effects contributing to both spectra demonstrated acceptable fit. GWAS identified 409 lead single nucleotide polymorphisms (SNPs) associated with externalizing and 85 lead SNPs associated with internalizing, while the second-order GWAS identified 256 lead SNPs contributing to broad psychopathology risk. In bivariate causal mixture models, nearly all externalizing and internalizing causal variants overlapped, despite a genetic correlation of only 0.37 (SE = 0.02) between them. Externalizing genes showed cell-type specific expression in GABAergic, cortical, and hippocampal neurons, and internalizing genes were associated with reduced subcallosal cortical volume, providing insight into the neurobiological underpinnings of psychopathology. Genetic liability for externalizing, internalizing, and broad psychopathology exerted causal effects on pain, general health, cardiovascular diseases, and chronic illnesses. These findings underscore the complex genetic architecture of psychopathology, identify potential biological pathways for the externalizing and internalizing spectra, and highlight the physical health burden of psychiatric comorbidity.

17.
Res Sq ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38659902

RESUMEN

There is considerable comorbidity across externalizing and internalizing behavior dimensions of psychopathology. We applied genomic structural equation modeling (gSEM) to genome-wide association study (GWAS) summary statistics to evaluate the factor structure of externalizing and internalizing psychopathology across 16 traits and disorders among European-ancestry individuals (n's = 16,400 to 1,074,629). We conducted GWAS on factors derived from well-fitting models. Downstream analyses served to identify biological mechanisms, explore drug repurposing targets, estimate genetic overlap between the externalizing and internalizing spectra, and evaluate causal effects of psychopathology liability on physical health. Both a correlated factors model, comprising two factors of externalizing and internalizing risk, and a higher-order single-factor model of genetic effects contributing to both spectra demonstrated acceptable t. GWAS identified 409 lead single nucleotide polymorphisms (SNPs) associated with externalizing and 85 lead SNPs associated with internalizing, while the second-order GWAS identified 256 lead SNPs contributing to broad psychopathology risk. In bivariate causal mixture models, nearly all externalizing and internalizing causal variants overlapped, despite a genetic correlation of only 0.37 (SE = 0.02) between them. Externalizing genes showed cell-type specific expression in GABAergic, cortical, and hippocampal neurons, and internalizing genes were associated with reduced subcallosal cortical volume, providing insight into the neurobiological underpinnings of psychopathology. Genetic liability for externalizing, internalizing, and broad psychopathology exerted causal effects on pain, general health, cardiovascular diseases, and chronic illnesses. These findings underscore the complex genetic architecture of psychopathology, identify potential biological pathways for the externalizing and internalizing spectra, and highlight the physical health burden of psychiatric comorbidity.

18.
Nat Med ; 30(4): 1075-1084, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38429522

RESUMEN

Chronic pain is a common problem, with more than one-fifth of adult Americans reporting pain daily or on most days. It adversely affects the quality of life and imposes substantial personal and economic costs. Efforts to treat chronic pain using opioids had a central role in precipitating the opioid crisis. Despite an estimated heritability of 25-50%, the genetic architecture of chronic pain is not well-characterized, in part because studies have largely been limited to samples of European ancestry. To help address this knowledge gap, we conducted a cross-ancestry meta-analysis of pain intensity in 598,339 participants in the Million Veteran Program, which identified 126 independent genetic loci, 69 of which are new. Pain intensity was genetically correlated with other pain phenotypes, level of substance use and substance use disorders, other psychiatric traits, education level and cognitive traits. Integration of the genome-wide association studies findings with functional genomics data shows enrichment for putatively causal genes (n = 142) and proteins (n = 14) expressed in brain tissues, specifically in GABAergic neurons. Drug repurposing analysis identified anticonvulsants, ß-blockers and calcium-channel blockers, among other drug groups, as having potential analgesic effects. Our results provide insights into key molecular contributors to the experience of pain and highlight attractive drug targets.


Asunto(s)
Dolor Crónico , Veteranos , Adulto , Humanos , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/genética , Estudio de Asociación del Genoma Completo/métodos , Dimensión del Dolor , Calidad de Vida , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple/genética
19.
medRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38343859

RESUMEN

Co-occurring psychiatric, medical, and substance use disorders (SUDs) are common, but the complex pathways leading to such comorbidities are poorly understood. A greater understanding of genetic influences on this phenomenon could inform precision medicine efforts. We used the Yale-Penn dataset, a cross-sectional sample enriched for individuals with SUDs, to examine pleiotropic effects of genetic liability for psychiatric and medical traits. Participants completed an in-depth interview that provides information on demographics, environment, medical illnesses, and psychiatric and SUDs. Polygenic scores (PGS) for psychiatric disorders and medical traits were calculated in European-ancestry (EUR; n=5,691) participants and, when discovery datasets were available, for African-ancestry (AFR; n=4,918) participants. Phenome-wide association studies (PheWAS) were then conducted. In AFR participants, the only PGS with significant associations was bipolar disorder (BD), all of which were with substance use phenotypes. In EUR participants, PGS for major depressive disorder (MDD), generalized anxiety disorder (GAD), post-traumatic stress disorder (PTSD), schizophrenia (SCZ), body mass index (BMI), coronary artery disease (CAD), and type 2 diabetes (T2D) all showed significant associations, the majority of which were with phenotypes in the substance use categories. For instance, PGS MDD was associated with over 200 phenotypes, 15 of which were depression-related (e.g., depression criterion count), 55 of which were other psychiatric phenotypes, and 126 of which were substance use phenotypes; and PGS BMI was associated with 138 phenotypes, 105 of which were substance related. Genetic liability for psychiatric and medical traits is associated with numerous phenotypes across multiple categories, indicative of the broad genetic liability of these traits.

20.
Mol Psychiatry ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38355787

RESUMEN

Individuals suffering from chronic pain develop substance use disorders (SUDs) more often than others. Understanding the shared genetic influences underlying the comorbidity between chronic pain and SUDs will lead to a greater understanding of their biology. Genome-wide association statistics were obtained from the UK Biobank for multisite chronic pain (MCP, Neffective = 387,649) and from the Million Veteran Program and the Psychiatric Genomics Consortium meta-analyses for alcohol use disorder (AUD, Neffective = 296,974), cannabis use disorder (CanUD, Neffective = 161,053), opioid use disorder (OUD, Neffective = 57,120), and problematic tobacco use (PTU, Neffective = 270,120). SNP-based heritability was estimated for each of the traits and genetic correlation (rg) analyses were performed to assess MCP-SUD pleiotropy. Bidirectional Mendelian Randomization analyses evaluated possible causal relationships. Finally, to identify and characterize individual loci, we performed a genome-wide pleiotropy analysis and a brain-wide analysis using imaging phenotypes available from the UK Biobank. MCP was positively genetically correlated with AUD (rg = 0.26, p = 7.55 × 10-18), CanUD (rg = 0.37, p = 8.21 × 10-37), OUD (rg = 0.20, p = 1.50 × 10-3), and PTU (rg = 0.29, p = 8.53 × 10-12). Although the MR analyses supported bi-directional relationships, MCP had larger effects on AUD (pain-exposure: beta = 0.18, p = 8.21 × 10-4; pain-outcome: beta = 0.07, p = 0.018), CanUD (pain-exposure: beta = 0.58, p = 2.70 × 10-6; pain-outcome: beta = 0.05, p = 0.014) and PTU (pain-exposure: beta = 0.43, p = 4.16 × 10-8; pain-outcome: beta = 0.09, p = 3.05 × 10-6) than the reverse. The genome-wide analysis identified two SNPs pleiotropic between MCP and all SUD investigated: IHO1 rs7652746 (ppleiotropy = 2.69 × 10-8), and CADM2 rs1248857 (ppleiotropy = 1.98 × 10-5). In the brain-wide analysis, rs7652746 was associated with multiple cerebellum and amygdala imaging phenotypes. When analyzing MCP pleiotropy with each SUD separately, we found 25, 22, and 4 pleiotropic variants for AUD, CanUD, and OUD, respectively. To our knowledge, this is the first large-scale study to provide evidence of potential causal relationships and shared genetic mechanisms underlying MCP-SUD comorbidity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...