Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
New Solut ; 31(3): 298-306, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34382476

RESUMEN

First responders encounter many hazards in the execution of their duties, and exposure to hazardous materials such as opioids is a primary safety concern. The ongoing opioid crisis in the United States continues to be a major public health issue, with overdose deaths from opioids reaching epidemic levels. Although responders frequently encounter opioids, available data on safety and risk are not always well-communicated, and we identified a need for refresher and just-in-time training products on this topic. In response, we created a training video series that is informative, concise, and visually appealing. The video series, available on YouTube, was tested with a small initial population, with findings suggesting key questions for a larger study focused on integration of the refresher training with existing programs to optimize retention and adoption of safety practices.


Asunto(s)
Sobredosis de Droga , Socorristas , Analgésicos Opioides/uso terapéutico , Sobredosis de Droga/tratamiento farmacológico , Sobredosis de Droga/prevención & control , Humanos , Estados Unidos
2.
Toxicol Appl Pharmacol ; 332: 149-158, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28392392

RESUMEN

Dichloromethane (DCM) is a lung and liver carcinogen in mice at inhalation exposures≥2000ppm. The modes of action (MOA) of these responses have been attributed to formation of genotoxic, reactive metabolite(s). Here, we examined gene expression in lung and liver from female B6C3F1 mice exposed to 0, 100, 500, 2000, 3000 and 4000ppm DCM for 90days. We also simulated dose measures - rates of DCM oxidation to carbon monoxide (CO) in lung and liver and expected blood carboxyhemoglobin (HbCO) time courses with a PBPK model inclusive of both conjugation and oxidation pathways. Expression of large numbers of genes was altered at 100ppm with maximal changes in the numbers occurring by 500 or 2000ppm. Most changes in genes common to the two tissues were related to cellular metabolism and circadian clock. At the lower concentrations, the changes in metabolism-related genes were discordant - up in liver and down in lung. These processes included organelle biogenesis, TCA cycle, and respiratory electron transport. Changes in circadian cycle genes - primarily transcription factors - showed strong concentration-related response at higher concentrations (Arntl, Npas2, and Clock were down-regulated; Cry2, Wee1, Bhlhe40, Per3, Nr1d1, Nr1d2 and Dbp) were up-regulated with similar directionality in both tissues. Overall, persistently elevated HbCO from DCM oxidation appears to cause extended periods of hypoxia, leading to altered circadian coupling to cellular metabolism. The dose response for altered circadian processes correlates with the cancer outcome. We found no evidence of changes in genes indicative of responses to cytotoxic, DNA-reactive metabolites.


Asunto(s)
Ritmo Circadiano , Hipoxia/genética , Hígado/efectos de los fármacos , Pulmón/efectos de los fármacos , Cloruro de Metileno/toxicidad , Transcriptoma , Animales , Carboxihemoglobina/genética , Carboxihemoglobina/metabolismo , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Relación Dosis-Respuesta a Droga , Femenino , Regulación de la Expresión Génica , Hipoxia/inducido químicamente , Hipoxia/patología , Exposición por Inhalación/efectos adversos , Hígado/metabolismo , Pulmón/metabolismo , Ratones , Ratones Endogámicos , Farmacocinética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
J Biol Chem ; 289(9): 6120-32, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24415756

RESUMEN

Phosphatidylinositol 4-kinase type IIIα (PI4KA) is a host factor essential for hepatitis C virus replication and hence is a target for drug development. PI4KA has also been linked to endoplasmic reticulum exit sites and generation of plasma membrane phosphoinositides. Here, we developed highly specific and potent inhibitors of PI4KA and conditional knock-out mice to study the importance of this enzyme in vitro and in vivo. Our studies showed that PI4KA is essential for the maintenance of plasma membrane phosphatidylinositol 4,5-bisphosphate pools but only during strong stimulation of receptors coupled to phospholipase C activation. Pharmacological blockade of PI4KA in adult animals leads to sudden death closely correlating with the drug's ability to induce phosphatidylinositol 4,5-bisphosphate depletion after agonist stimulation. Genetic inactivation of PI4KA also leads to death; however, the cause in this case is due to severe intestinal necrosis. These studies highlight the risks of targeting PI4KA as an anti-hepatitis C virus strategy and also point to important distinctions between genetic and pharmacological studies when selecting host factors as putative therapeutic targets.


Asunto(s)
Membrana Celular/enzimología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Células COS , Membrana Celular/genética , Chlorocebus aethiops , Activación Enzimática/genética , Marcación de Gen , Células HEK293 , Hepatitis C/enzimología , Hepatitis C/genética , Hepatitis C/terapia , Humanos , Ratones , Ratones Transgénicos , Antígenos de Histocompatibilidad Menor , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatos de Fosfatidilinositol/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
4.
Int J Toxicol ; 32(3): 189-97, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23616145

RESUMEN

When conventional vehicles (eg, methylcellulose and water) impart inadequate physical, chemical, and/or biological properties for proper toxicological assessment of test article formulations, nonconventional vehicles may be considered. Often toxicity data for nonconventional vehicle formulations are limited. Studies were conducted to collect toxicity data from a rodent and a non-rodent species given 2 nonconventional vehicles, Solutol HS15/polyethylene glycol (PEG) 400 and Cremophor RH40/PEG 400, with differing formulations and dose volumes (10 mL/kg for rats; 2 or 5 mL/kg for dogs). In rats, both vehicles caused increase in kidney weights (males only) and decrease in thymic weights (males only) without concurrent microscopic findings; altered urine electrolytes, minimally decreased serum electrolytes (males only), and increased serum total cholesterol (females only) were also present. The Cremophor formulation was also associated with increased serum urea (males only) and urine phosphorus: creatinine. For rats given the Solutol formulation, both genders had decreased urine glucose parameters and males had increased urine volume. In dogs, loose/watery feces and emesis were present given either vehicle, and mucus-cell hyperplasia of the ileum was present given the Solutol formulation. Increased red blood cell mass and decreased urine volume in dogs given 30% Solutol/70% PEG 400 (5 mL/kg/d) were likely due to subclinical dehydration and hemoconcentration. For the Cremophor formulations, dose volume-dependent increased incidence of minimal subepithelial gastric hemorrhage was noted in dogs, and dogs given 5 mL/kg/d showed increased serum urea nitrogen. Overall, regardless of the formulation or dose volume, neither vehicle produced overt toxicity in either species, but the Solutol formulation produced fewer effects in rats. Generally, lower dose volumes minimized the severity and/or incidence of findings.


Asunto(s)
Polietilenglicoles/química , Ácidos Esteáricos/toxicidad , Animales , Perros , Femenino , Masculino , Polietilenglicoles/toxicidad , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Organismos Libres de Patógenos Específicos , Ácidos Esteáricos/química
5.
Bioanalysis ; 3(14): 1625-33, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21756095

RESUMEN

BACKGROUND: Prior to bioanalysis, sample transport and storage are critical considerations in any pharmacokinetic or toxicokinetic study design. Care must be taken to ensure the shipment is properly packaged and tracked to make certain it arrives at the desired, final destination in the appropriate timeframe, and that the integrity of the sample is not compromised. When dealing with biological specimens, environmental conditions may have a deleterious effect on the stability and conditions of the sample. RESULTS: Currently, frozen plasma or blood samples are the matrix of choice within the pharmaceutical industry for analysis within both preclinical and clinical trials. Liquid samples are shipped and received frozen and, therefore, the assumption is made that the frozen conditions are maintained throughout the entire transit process. Dried blood spot and dried matrix spot samples are becoming popular alternatives to plasma sampling in many small- and even large-molecule applications. With the implementation of dried blood spot and dried matrix spot samples, shipping and storage occurs under ambient conditions. CONCLUSION: In this article we discuss various shipping containers for these samples, illustrate the environmental extremes encountered during the shipping process, demonstrate a cost-effective method of monitoring both temperature and humidity, and discuss validation steps that may be implemented to minimize the impact of these variables on your study design.


Asunto(s)
Pruebas con Sangre Seca/métodos , Manejo de Especímenes/métodos , Ambiente , Humanos , Manejo de Especímenes/instrumentación
6.
Toxicol Sci ; 83(2): 207-14, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15509663

RESUMEN

Reports suggest that troglitazone, and to a lesser extent bosentan, may alter bile acid homeostasis by inhibiting the bile salt export pump. The present studies examined the hypothesis that these xenobiotics may modulate multiple hepatic bile acid transport mechanisms. In suspended rat hepatocytes, troglitazone (10 microM) decreased the initial rate of taurocholate uptake approximately 3-fold; the initial uptake rate of estradiol-17beta-D-glucuronide, a substrate of the organic anion transporting polypeptides, also was decreased approximately 4-fold. Bosentan (100 microM) decreased the initial uptake rate of taurocholate and estradiol-17beta-D-glucuronide by approximately 12- and approximately 7-fold, respectively. In sandwich-cultured rat hepatocytes, 10-min accumulation of taurocholate in cells + bile canaliculi (408 +/- 57 pmol/mg protein) was decreased significantly by troglitazone (157 +/- 17 pmol/mg protein, respectively) only in the presence of Na+, the driving force for the sodium taurocholate cotransporting polypeptide. A similar decrease with 10-fold higher concentrations of bosentan was noted. The biliary excretion index of taurocholate (55 +/- 8%) was decreased in the presence of 10 microM troglitazone (27 +/- 2%) and 100 microM bosentan (10 +/- 6%). In conclusion, xenobiotics may alter hepatic bile acid transport by inhibiting both hepatic uptake and biliary excretion.


Asunto(s)
Canalículos Biliares/efectos de los fármacos , Fármacos Cardiovasculares/toxicidad , Cromanos/toxicidad , Hepatocitos/efectos de los fármacos , Sulfonamidas/toxicidad , Ácido Taurocólico/farmacocinética , Tiazolidinedionas/toxicidad , Animales , Canalículos Biliares/metabolismo , Bosentán , Células Cultivadas , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Hepatocitos/metabolismo , Masculino , Ratas , Ratas Wistar , Troglitazona
7.
Toxicol In Vitro ; 18(6): 869-77, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15465654

RESUMEN

Troglitazone, bosentan and glibenclamide inhibit the bile salt export pump (Bsep) which transports taurocholate into bile. Sandwich-cultured rat hepatocytes maintain functional sodium taurocholate co-transporting polypeptide and Bsep transport proteins, and may be useful to study inhibition of transport by xenobiotics at concentrations below the lowest observable adverse effect level (LOAEL). The purpose of this study was to compare viability assessments determined with the neutral red, lactate dehydrogenase (LDH), alamar blue, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and propidium iodide assays in sandwich-cultured rat hepatocytes following exposure to xenobiotics known to inhibit Bsep, and to define the LOAEL for these xenobiotics in this system. The neutral red assay was not amenable to use in this model due to crystal formation on the collagen. Troglitazone decreased viability in every assay examined, with a LOAEL approximately 100 microM. Bosentan also decreased viability as measured by the LDH, MTT and propidium iodide assays, with a LOAEL approximately 200 microM; however, a significant decrease in viability was not observed with the alamar blue assay. Glibenclamide did not decrease viability with any assay at the xenobiotic concentrations examined in this study. Based on the results of this study, the LDH or propidium iodide assays would be the methods of choice to assess viability in sandwich-cultured rat hepatocytes after xenobiotic exposure.


Asunto(s)
Hepatocitos/enzimología , L-Lactato Deshidrogenasa/farmacología , Xenobióticos/toxicidad , Animales , Bioensayo/métodos , Técnicas de Cultivo de Célula , Supervivencia Celular , Colorantes/análisis , Indicadores y Reactivos/análisis , L-Lactato Deshidrogenasa/análisis , Oxazinas/análisis , Propidio/análisis , Ratas , Sales de Tetrazolio/análisis , Tiazoles/análisis , Xantenos/análisis
8.
Drug Metab Dispos ; 30(6): 694-700, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12019197

RESUMEN

Raloxifene, a selective estrogen receptor modulator used for the treatment of osteoporosis, undergoes extensive conjugation to the 6-beta- and 4'-beta-glucuronides in vivo. This paper investigated raloxifene glucuronidation by human liver and intestinal microsomes and identified the responsible UDP-glucuronosyltransferases (UGTs). UGT1A1 and 1A8 were found to catalyze the formation of both the 6-beta- and 4'-beta-glucuronides, whereas UGT1A10 formed only the 4'-beta-glucuronide. Expressed UGT1A8 catalyzed 6-beta-glucuronidation with an apparent K(m) of 7.9 microM and a V(max) of 0.61 nmol/min/mg of protein and 4'-beta-glucuronidation with an apparent K(m) of 59 microM and a V(max) of 2.0 nmol/min/mg. Kinetic parameters for raloxifene glucuronidation by expressed UGT1A1 could not be determined due to limited substrate solubility. Based on rates of raloxifene glucuronidation and known extrahepatic expression, UGT1A8 and 1A10 appear to be primary contributors to raloxifene glucuronidation in human jejunum microsomes. For human liver microsomes, the variability of 6-beta- and 4'-beta-glucuronide formation was 3- and 4-fold, respectively. Correlation analyses revealed that UGT1A1 was responsible for 6-beta- but not 4'-beta-glucuronidation in liver. Treatment of expressed UGTs with alamethicin resulted in minor increases in enzyme activity, whereas in human intestinal microsomes, maximal increases of 8-fold for the 6-glucuronide and 9-fold for the 4'-glucuronide were observed. Intrinsic clearance values in intestinal microsomes were 17 microl/min/mg for the 6-glucuronide and 95 microl/min/mg for the 4'-isomer. The corresponding values for liver microsomes were significantly lower, indicating that intestinal glucuronidation may be a significant contributor to the presystemic clearance of raloxifene in vivo.


Asunto(s)
Antagonistas de Estrógenos/metabolismo , Glucurónidos/metabolismo , Mucosa Intestinal/metabolismo , Microsomas/metabolismo , Clorhidrato de Raloxifeno/metabolismo , Alameticina/farmacología , Biotransformación , Antagonistas de Estrógenos/farmacocinética , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Humanos , Técnicas In Vitro , Absorción Intestinal , Intestinos/efectos de los fármacos , Intestinos/enzimología , Isoenzimas/metabolismo , Microsomas/efectos de los fármacos , Microsomas/enzimología , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Microsomas Hepáticos/metabolismo , Clorhidrato de Raloxifeno/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...