Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1730: 465112, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38972253

RESUMEN

A macrocyclic peptide A was successfully purified in large quantities (∼30 g) in >95 % purity by an integrated two-step orthogonal purification process combining supercritical fluid chromatography (SFC) with medium-pressure reverse-phase liquid chromatography (MP-RPLC). MP-RPLC was used to fractionate the crude peptide A, remove unwanted trifluoroacetic acid (TFA) originating from the peptide A cleavage off the resin, and convert the peptide A into ammonium acetate salt form, prior to the final purification by SFC. A co-solvent of methanol/acetonitrile containing ammonium acetate and water in CO2 was developed on a Waters BEH 2-Ethylpyridine column. The developed SFC method was readily scaled up onto a 5 cm diameter column to process multi-gram quantities of the MP-RPLC fraction to reach > 95 % purity with a throughput/productivity of 0.96 g/h. The incorporation of SFC with MP-RPLC has been demonstrated to have a broader application in other large-scale polypeptide purifications.


Asunto(s)
Cromatografía de Fase Inversa , Cromatografía con Fluido Supercrítico , Cromatografía con Fluido Supercrítico/métodos , Cromatografía de Fase Inversa/métodos , Acetatos/química , Ácido Trifluoroacético/química , Péptidos Cíclicos/química , Péptidos Cíclicos/aislamiento & purificación , Acetonitrilos/química , Metanol/química
2.
J Org Chem ; 89(10): 6639-6650, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38651358

RESUMEN

We describe an optimization and scale-up of the 45-membered macrocyclic thioether peptide BMS-986189 utilizing solid-phase peptide synthesis (SPPS). Improvements to linear peptide isolation, macrocyclization, and peptide purification were demonstrated to increase the throughput and purification of material on scale and enabled the synthesis and purification of >60 g of target peptide. Taken together, not only these improvements resulted in a 28-fold yield increase from the original SPPS approach, but also the generality of this newly developed SPPS purification sequence has found application in the synthesis and purification of other macrocyclic thioether peptides.


Asunto(s)
Compuestos Macrocíclicos , Péptidos , Técnicas de Síntesis en Fase Sólida , Sulfuros , Sulfuros/química , Sulfuros/síntesis química , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/síntesis química , Péptidos/química , Péptidos/síntesis química , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Estructura Molecular , Ciclización
3.
J Org Chem ; 89(10): 6651-6663, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38663026

RESUMEN

This article outlines the process development leading to the manufacture of 800 g of BMS-986189, a macrocyclic peptide active pharmaceutical ingredient. Multiple N-methylated unnatural amino acids posed challenges to manufacturing due to the lability of the peptide to cleavage during global side chain deprotection and precipitation steps. These issues were exacerbated upon scale-up, resulting in severe yield loss and necessitating careful impurity identification, understanding the root cause of impurity formation, and process optimization to deliver a scalable synthesis. A systematic study of macrocyclization with its dependence on concentration and pH is presented. In addition, a side chain protected peptide synthesis is discussed where the macrocyclic protected peptide is extremely labile to hydrolysis. A computational study explains the root cause of the increased lability of macrocyclic peptide over linear peptide to hydrolysis. A process solution involving the use of labile protecting groups is discussed. Overall, the article highlights the advancements achieved to enable scalable synthesis of an unusually labile macrocyclic peptide by solid-phase peptide synthesis. The sustainability metric indicates the final preparative chromatography drives a significant fraction of a high process mass intensity (PMI).


Asunto(s)
Compuestos Macrocíclicos , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/síntesis química , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/química , Péptidos/química , Péptidos/síntesis química , Técnicas de Síntesis en Fase Sólida , Estructura Molecular
4.
Org Biomol Chem ; 20(48): 9746-9752, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36444969

RESUMEN

A simple and expeditious method for the regioselective synthesis of N1-substituted-4-nitropyrazole-5-carboxylates was developed. The method involves cyclocondensation of ethyl 4-(dimethylamino)-3-nitro-2-oxobut-3-enoate with a series of monosubstituted hydrazines to give N1-substituted-4-nitropyrazole-5-carboxylates with excellent regioselectivity and good yields. Solvent effects on regioselectivity of the cyclocondensation were examined.


Asunto(s)
Ácidos Carboxílicos , Hidrazinas , Ciclización
5.
J Med Chem ; 65(18): 11927-11948, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36044257

RESUMEN

GSK3640254 is an HIV-1 maturation inhibitor (MI) that exhibits significantly improved antiviral activity toward a range of clinically relevant polymorphic variants with reduced sensitivity toward the second-generation MI GSK3532795 (BMS-955176). The key structural difference between GSK3640254 and its predecessor is the replacement of the para-substituted benzoic acid moiety attached at the C-3 position of the triterpenoid core with a cyclohex-3-ene-1-carboxylic acid substituted with a CH2F moiety at the carbon atom α- to the pharmacophoric carboxylic acid. This structural element provided a new vector with which to explore structure-activity relationships (SARs) and led to compounds with improved polymorphic coverage while preserving pharmacokinetic (PK) properties. The approach to the design of GSK3640254, the development of a synthetic route and its preclinical profile are discussed. GSK3640254 is currently in phase IIb clinical trials after demonstrating a dose-related reduction in HIV-1 viral load over 7-10 days of dosing to HIV-1-infected subjects.


Asunto(s)
Fármacos Anti-VIH , VIH-1 , Triterpenos , Humanos , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Ácido Benzoico/química , Carbono , Triterpenos/química , Triterpenos/farmacología , Triterpenos/uso terapéutico
6.
J Med Chem ; 64(19): 14773-14792, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34613725

RESUMEN

MGAT2 inhibition is a potential therapeutic approach for the treatment of metabolic disorders. High-throughput screening of the BMS internal compound collection identified the aryl dihydropyridinone compound 1 (hMGAT2 IC50 = 175 nM) as a hit. Compound 1 had moderate potency against human MGAT2, was inactive vs mouse MGAT2 and had poor microsomal metabolic stability. A novel chemistry route was developed to synthesize aryl dihydropyridinone analogs to explore structure-activity relationship around this hit, leading to the discovery of potent and selective MGAT2 inhibitors 21f, 21s, and 28e that are stable to liver microsomal metabolism. After triaging out 21f due to its inferior in vivo potency, pharmacokinetics, and structure-based liabilities and tetrazole 28e due to its inferior channel liability profile, 21s (BMS-963272) was selected as the clinical candidate following demonstration of on-target weight loss efficacy in the diet-induced obese mouse model and an acceptable safety and tolerability profile in multiple preclinical species.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Enfermedades Metabólicas/tratamiento farmacológico , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , Animales , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Humanos , Relación Estructura-Actividad
7.
J Med Chem ; 64(21): 15787-15798, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34704759

RESUMEN

Inhibition of TGFß signaling in concert with a checkpoint blockade has been shown to provide improved and durable antitumor immune response in mouse models. However, on-target adverse cardiovascular effects have limited the clinical use of TGFß receptor (TGFßR) inhibitors in cancer therapy. To restrict the activity of TGFßR inhibitors to tumor tissues and thereby widen the therapeutic index, a series of tumor-activated prodrugs of a selective small molecule TGFßR1 inhibitor 1 were prepared by appending 1 to a serine protease substrate and a half-life extension fatty acid carbon chain. The prodrugs were shown to be selectively metabolized in tumor tissues relative to the heart and blood and demonstrated a prolonged favorable increase in the tumor-to-heart ratio of the active drug in tissue distribution studies. Once-weekly administration of the most tissue-selective compound 10 provided anti-tumor efficacy comparable to the parent compound and reduced systemic exposure of the active drug.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Profármacos/uso terapéutico , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/metabolismo , Área Bajo la Curva , Estabilidad de Medicamentos , Femenino , Semivida , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Estructura Molecular , Miocardio/metabolismo , Neoplasias/metabolismo , Profármacos/química , Profármacos/farmacocinética , Bibliotecas de Moléculas Pequeñas/farmacología , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
8.
J Chromatogr A ; 1652: 462356, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34218126

RESUMEN

An efficient and "endotoxin-free" purification of a cyclic dinucleotide (CDN) STING agonist was achieved to produce multigram quantities of pure BMT-390025, an active pharmaceutical ingredient (API), for toxicological studies. A two-step sub/supercritical fluid chromatography (SFC) procedure was developed for the achiral purification and desalting of the polar ionic CDN. A robust SFC process employing methanol-acetonitrile-water with ammonium acetate as co-solvent in CO2 on BEH 2-ethylpyridine was established and scaled up as the first step to achieve a successful purification. The desalting/salt-switching (i.e. removing acetate and acetamide) was conducted using methanol-water with ammonium hydroxide as co-solvent on the same column in the second step to convert the final API to the ammonium salt. Water with additive was essential to eliminating salt precipitation and improving the peak shape and resolution. Due to the extreme hydrophilicity of BMT-390025, 65% of co-solvent was needed to adequately elute the target in both steps. More than 40 g of crude API was purified and desalted producing >20 g of pure BMT-390025 as the ammonium salt which was obtained with a chemical purity of >98.5% and met the endotoxin requirement of <0.1 EU/mg. In addition, >80 g of its penultimate prior to the deprotection of the silyl group was purified at a high throughput of 6.3 g/h (0.42 g/day/g SP).


Asunto(s)
Cromatografía con Fluido Supercrítico/métodos , Acetamidas/química , Acetatos/química , Acetonitrilos/química , Hidróxido de Amonio/química , Interacciones Hidrofóbicas e Hidrofílicas , Metanol/química , Solventes/química , Agua/química
9.
ACS Med Chem Lett ; 12(7): 1143-1150, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34267885

RESUMEN

IDO1 inhibitors have shown promise as immunotherapies for the treatment of a variety of cancers, including metastatic melanoma and renal cell carcinoma. We recently reported the identification of several novel heme-displacing IDO1 inhibitors, including the clinical molecules linrodostat (BMS-986205) and BMS-986242. Both molecules contain quinolines that, while being present in successful medicines, are known to be potentially susceptible to oxidative metabolism. Efforts to swap this quinoline with an alternative aromatic system led to the discovery of 2,3-disubstituted pyridines as suitable replacements. Further optimization, which included lowering ClogP in combination with strategic fluorine incorporation, led to the discovery of compound 29, a potent, selective IDO1 inhibitor with robust pharmacodynamic activity in a mouse xenograft model.

10.
J Org Chem ; 86(13): 8851-8861, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34126006

RESUMEN

We describe a stereodefined synthesis of the newly identified non-natural phosphorothioate cyclic dinucleotide (CDN) STING agonist, BMT-390025. The new route avoids the low-yielding racemic approach using P(III)-based reagents, and the stereospecific assembly of the phosphorothioate linkages are forged via the recently invented P(V)-based platform of the so-called PSI (Ψ) reagent system. This P(V) approach allows for the complete control of chirality of the P-based linkages and enabled conclusive evidence of the absolute configuration. The new approach offers robust procedures for preparing the stereodefined CDN in eight steps starting from advanced nucelosides, with late-stage direct drop isolations and telescoped steps enabling an efficient scale-up that proceeded in an overall 15% yield to produce multigram amounts of the CDN.

11.
J Chromatogr A ; 1651: 462309, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34147835

RESUMEN

A regioisomeric mixture of the nucleoside derivative, Intermediate 1, required resolution by preparative supercritical fluid chromatography (SFC) in order to obtain the desired regioisomer as a key intermediate in a STING agonist program. Various chiral columns and solvents including methanol, acetonitrile, isopropanol, and the mixture of acetonitrile and isopropanol as organic modifiers in carbon dioxide at different temperatures were screened to obtain the best regioisomeric resolution. A key issue associated with interconversion between the regioisomers via silyl migration during purification was investigated in methanol, acetonitrile, and the mixture of acetonitrile and isopropanol, and the optimal organic modifier in CO2 was established to mitigate the interconversion to an acceptable level (<5%). Taking into account peak resolution, throughput, interconversion and operation robustness, an efficient SFC method for large-scale purification was successfully developed and scaled up onto a 5 cm I. D. Chiralcel OJ-H column using 25% acetonitrile: isopropanol [1:1 (v/v)] with 0.1% ammonium hydroxide as the modifier in CO2 at a total flow rate of 270 mL/min and a temperature of 30°C. In addition, continual evaporation (i.e. every hour) of the desired isomer fraction stream post-separation ensured minimal further interconversion. A total of 258 grams were separated at a high throughput of 8.6 g/h. Regioisomeric purity of the desired isomer of Intermediate 1 was ≥98.2% and the recovery was ≥90.2%. A similar purification strategy was applied to the regioisomeric resolution of Intermediate 2, an analog of Intermediate 1. In total, 1028 grams of Intermediate 2 were processed at a high throughput of 12.5 g/h on a Viridis BEH 2-EP column. The regioisomeric purity of the desired isomer was ≥96.8% and the recovery was ≥90.7%.


Asunto(s)
Adyuvantes Inmunológicos/aislamiento & purificación , Cromatografía con Fluido Supercrítico , Proteínas de la Membrana/agonistas , Adyuvantes Inmunológicos/química , Hidróxido de Amonio/química , Dióxido de Carbono/química , Proteínas de la Membrana/genética , Metanol/química , Solventes/química , Estereoisomerismo , Temperatura
12.
J Chromatogr A ; 1651: 462318, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34161834

RESUMEN

BMS-962212, a parenteral Factor XIa inhibitor, was scaled-up for toxicity studies. Two steps of supercritical fluid chromatography (SFC) were developed for the chiral resolution of the penultimate and achiral purification of final active pharmaceutical ingredient (API), BMS-962212. A robust SFC process using Chiralcel OD-H with methanol-acetonitrile as modifier in CO2 was established to achieve a stable and uninterrupted operation with reduced mobile phase viscosity and system pressure drop. More than 230 g of the racemic penultimate was chirally resolved to reach >99% chiral purity, ready for final tert-butyl ester deprotection to provide the API. There were a significant number of impurities in BMS-962212 generated from the final step that needed to be removed. In contrast to conventional SFC conditions, an SFC method exploiting water and ammonia as additives in both the mobile phase and sample solution was developed to accomplish purification and desalting (i.e. removing TFA) of the zwitterionic API in one step. Water as an additive eliminated salt precipitation and improved the resolution while ammonia contributed to the desalting, details of which will be discussed in this article. A throughput of 2 g/h was achieved, and >80 g of the crude API was purified. The same strategy was applied to another Factor XIa API (compound A) and its penultimate.


Asunto(s)
Cromatografía con Fluido Supercrítico/métodos , Factor XIa/aislamiento & purificación , Preparaciones Farmacéuticas/aislamiento & purificación , Agua/química , Acetonitrilos , Amoníaco/química , Cromatografía Líquida de Alta Presión , Factor XIa/química , Isoquinolinas/química , Metanol/química , Preparaciones Farmacéuticas/química , Estereoisomerismo , para-Aminobenzoatos/química
13.
J Org Chem ; 86(2): 1730-1747, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33356273

RESUMEN

Indole and indoline rings are important pharmacophoric scaffolds found in marketed drugs, agrochemicals, and biologically active molecules. The [2 + 2] cycloaddition reaction is a versatile strategy for constructing architecturally interesting, sp3-rich cyclobutane-fused scaffolds with potential applications in drug discovery programs. A general platform for visible-light mediated intermolecular [2 + 2] cycloaddition of indoles with alkenes has been realized. A substrate-based screening approach led to the discovery of tert-butyloxycarbonyl (Boc)-protected indole-2-carboxyesters as suitable motifs for the intermolecular [2 + 2] cycloaddition reaction. Significantly, the reaction proceeds in good yield with a wide variety of both activated and unactivated alkenes, including those containing free amines and alcohols, and the transformation exhibits excellent regio- and diastereoselectivity. Moreover, the scope of the indole substrate is very broad, extending to previously unexplored azaindole heterocycles that collectively afford fused cyclobutane containing scaffolds that offer unique properties with functional handles and vectors suitable for further derivatization. DFT computational studies provide insights into the mechanism of this [2 + 2] cycloaddition, which is initiated by a triplet-triplet energy transfer process. The photocatalytic reaction was successfully performed on a 100 g scale to provide the dihydroindole analog.

14.
ACS Med Chem Lett ; 11(11): 2195-2203, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33214829

RESUMEN

Bruton's tyrosine kinase (BTK) has been shown to play a key role in the pathogenesis of autoimmunity. Therefore, the inhibition of the kinase activity of BTK with a small molecule inhibitor could offer a breakthrough in the clinical treatment of many autoimmune diseases. This Letter describes the discovery of BMS-986143 through systematic structure-activity relationship (SAR) development. This compound benefits from defined chirality derived from two rotationally stable atropisomeric axes, providing a potent and selective single atropisomer with desirable efficacy and tolerability profiles.

15.
J Org Chem ; 85(16): 10988-10993, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32687358

RESUMEN

We describe an efficient synthetic route to differentially protected diester, 1-(tert-butyl) 4-methyl (1R,2S,4R)-2-methylcyclohexane-1,4-dicarboxylate (+)-1, via palladium-catalyzed methoxycarbonylation of an enol triflate derived from a Hagemann's ester derivative followed by a stereoselective Crabtree hydrogenation. Diester 1 is a novel chiral synthon useful in drug discovery and was instrumental in the generation of useful SAR during a RORγt inverse agonist program. In addition, we describe a second-generation synthesis of the clinical candidate BMS-986251, using diester 1 as a critical component.


Asunto(s)
Ácidos Carboxílicos , Ésteres , Ciclohexanos , Estereoisomerismo
16.
J Am Chem Soc ; 142(6): 3094-3103, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31927959

RESUMEN

We describe the synthesis through visible-light photocatalysis of novel functionalized tetracyclic scaffolds that incorporate a fused azabicyclo[3.2.0]heptan-2-one motif, which are structurally interesting cores with potential in natural product synthesis and drug discovery. The synthetic approach involves an intramolecular [2 + 2] cycloaddition with concomitant dearomatization of the heterocycle via an energy transfer process promoted by an iridium-based photosensitizer, to build a complex molecular architecture with at least three stereogenic centers from relatively simple, achiral precursors. These fused azabicyclo[3.2.0]heptan-2-one-based tetracycles were obtained in high yield (generally >99%) and with excellent diastereoselectivity (>99:1). The late-stage derivatization of a bromine-substituted, tetracyclic indoline derivative with alkyl groups, employing a mild Negishi C-C bond forming protocol as a means of increasing structural diversity, provides additional modularity that will enable the delivery of valuable building blocks for medicinal chemistry. Density functional theory calculations were used to compute the T1-S0 free energy gap of the olefin-tethered precursors and also to predict their reactivities based on triplet state energy transfer and transition state energy feasibility.

17.
J Med Chem ; 62(20): 8973-8995, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31318208

RESUMEN

Small molecule JAK inhibitors have emerged as a major therapeutic advancement in treating autoimmune diseases. The discovery of isoform selective JAK inhibitors that traditionally target the catalytically active site of this kinase family has been a formidable challenge. Our strategy to achieve high selectivity for TYK2 relies on targeting the TYK2 pseudokinase (JH2) domain. Herein we report the late stage optimization efforts including a structure-guided design and water displacement strategy that led to the discovery of BMS-986165 (11) as a high affinity JH2 ligand and potent allosteric inhibitor of TYK2. In addition to unprecedented JAK isoform and kinome selectivity, 11 shows excellent pharmacokinetic properties with minimal profiling liabilities and is efficacious in several murine models of autoimmune disease. On the basis of these findings, 11 appears differentiated from all other reported JAK inhibitors and has been advanced as the first pseudokinase-directed therapeutic in clinical development as an oral treatment for autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Descubrimiento de Drogas , Compuestos Heterocíclicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , TYK2 Quinasa/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Animales , Cristalografía por Rayos X , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacocinética , Compuestos Heterocíclicos/uso terapéutico , Humanos , Ratones , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico
18.
ACS Med Chem Lett ; 10(3): 306-311, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30891131

RESUMEN

The four members of the Janus family of nonreceptor tyrosine kinases play a significant role in immune function. The JAK family kinase inhibitor, tofacitinib 1, has been approved in the United States for use in rheumatoid arthritis (RA) patients. A number of JAK inhibitors with a variety of JAK family selectivity profiles are currently in clinical trials. Our goal was to identify inhibitors that were functionally selective for JAK1 and JAK3. Compound 22 was prepared with the desired functional selectivity profile, but it suffered from poor absorption related to physical properties. Use of the phosphate prodrug 32 enabled progression to a murine collagen induced arthritis (CIA) model. The demonstration of a robust efficacy in the CIA model suggests that use of phosphate prodrugs may resolve issues with progressing this chemotype for the treatment of autoimmune diseases such as RA.

19.
ACS Med Chem Lett ; 9(5): 472-477, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29795762

RESUMEN

There is a significant unmet medical need for more efficacious and rapidly acting antidepressants. Toward this end, negative allosteric modulators of the N-methyl-d-aspartate receptor subtype GluN2B have demonstrated encouraging therapeutic potential. We report herein the discovery and preclinical profile of a water-soluble intravenous prodrug BMS-986163 (6) and its active parent molecule BMS-986169 (5), which demonstrated high binding affinity for the GluN2B allosteric site (Ki = 4.0 nM) and selective inhibition of GluN2B receptor function (IC50 = 24 nM) in cells. The conversion of prodrug 6 to parent 5 was rapid in vitro and in vivo across preclinical species. After intravenous administration, compounds 5 and 6 have exhibited robust levels of ex vivo GluN2B target engagement in rodents and antidepressant-like activity in mice. No significant off-target activity was observed for 5, 6, or the major circulating metabolites met-1 and met-2. The prodrug BMS-986163 (6) has demonstrated an acceptable safety and toxicology profile and was selected as a preclinical candidate for further evaluation in major depressive disorder.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...